با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

فیلم‌های پروتئینی به‌دلیل ویژگی‌های منحصر به فرد و قابلیت‌های تطبیق‌پذیری خود، توجه زیادی در زمینه توسعه مواد بسته‌بندی پایدار جلب کرده‌اند. این فیلم‌ها به خاطر ممانعت از نفوذپذیری گازها، ویژگی‌های مکانیکی خاص و قابلیت‌های اتصال بین مولکولی، نسبت به سایر پلیمرهای زیستی بیشتر مورد توجه قرار گرفته‌اند. در سال‌های اخیر، محققان به بررسی روش‌های جدیدی برای بهبود خواص فیلم‌سازی، افزایش استحکام مکانیکی و کاهش نفوذپذیری به گازها در فیلم‌های پروتئینی پرداخته‌اند. منابع پروتئینی مختلفی مانند ژلاتین، پروتئین آب پنیر، پروتئین سویا، زئین ذرت، گلوتن گندم و کازئین برای ساخت این فیلم‌ها مورد بررسی قرار گرفته‌اند. تکنیک‌هایی مانند ترکیب افزودنی‌ها، استفاده از عوامل اتصال‌دهنده عرضی و به‌کارگیری نانومواد، برای بهبود خواص این فیلم‌ها در حال اکتشاف هستند. همچنین، فیلم‌های کامپوزیتی بر پایه پروتئین با ترکیب پروتئین‌ها با دیگر پلیمرهای زیستی یا مواد مصنوعی به‌منظور دستیابی به عملکرد بهبود یافته تولید شده‌اند. پیشرفت‌ها در فناوری‌های تولید مانند قالب‌ریزی فیلم، اکستروژن و الکتروریسی، کنترل دقیق ضخامت، مورفولوژی و ویژگی‌های ساختاری فیلم‌های پروتئینی را امکان‌پذیر کرده است. این فیلم‌ها نه تنها ویژگی‌های نفوذپذیری بسیار خوبی دارند، بلکه زیست تخریب‌پذیری و تجدیدپذیری نیز از دیگر مزایای آن‌هاست که با افزایش تقاضا برای تولید بسته‌بندی‌های سازگار با محیط‌زیست هم‌راستا است. بهبود و تهیه فیلم‌های پروتئینی دارای پتانسیل قابل توجهی برای متحول کردن صنعت بسته‌بندی و کمک به ساخت دنیایی سبزتر و محیط زیست‌دوستانه تر می‌باشد. این مقاله به بررسی تحقیقات و پیشرفت‌های کنونی در این حوزه می‌پردازد و منابع مختلف پروتئین، تکنیک‌های اصلاح فیلم، روش‌های تولید، چالش‌ها و چشم‌اندازهای آینده را مورد بررسی قرار می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Biodegradable Packaging Made from Proteins

نویسندگان [English]

  • Samar Sahraee
  • Jafar Milani

Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

چکیده [English]

Protein films have gained significant attention in the development of sustainable packaging materials due to their exceptional properties and versatility. These films offer superior gas barrier properties, specific mechanical characteristics, and enhanced intermolecular connection capabilities compared to other biopolymers. Researchers are exploring innovative methods to enhance the film-forming properties of proteins, improve their mechanical strength, and optimize their gas barrier performance. Various protein sources, such as gelatin, whey protein, soy protein, corn zein, wheat gluten, and casein, are being investigated for film fabrication. Techniques to modify protein films, including the incorporation of additives, crosslinking agents, and nanomaterials, are being explored to enhance their properties. The development of protein-based composite films, by blending proteins with other biopolymers or synthetic materials, is also being explored to achieve improved performance and functionality. Advancements in processing technologies, such as film casting, extrusion, and electrospinning, enable precise control over the thickness, morphology, and structural properties of protein films. These films not only offer enhanced barrier properties but also possess biodegradability and renewable characteristics, aligning with the increasing demand for eco-friendly packaging solutions. The preparation and improvement of protein films hold significant potential for revolutionizing the packaging industry and contributing to a greener and more environmentally friendly future. This review provides an overview of current research and advancements in the field, addressing various protein sources, film modification techniques, processing methods, challenges, and future prospects.

کلیدواژه‌ها [English]

  • Degradable
  • Food packaging
  • Nanotechnology
  • Physicochemical properties
  • Protein

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Acquah, C., Zhang, Y., Dubé, M.A., & Udenigwe, C.C. (2020). Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Current Research in Food Science, 2, 61-69. https://doi.org/10.1016/j.crfs.2019.11.008
  2. Alak, G., Guler, K., Ucar, A., Parlak, V., Kocaman, E.M., Yanık, T., & Atamanalp, M. (2019). Quinoa as polymer in edible films with essential oil: Effects on rainbow trout fillets shelf life. Journal of Food Processing and Preservation, 43(12), 1-11. https://doi.org/10.1111/jfpp.14268
  3. Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P.A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/carboxymethyl cellulose/cellulose nanofiber using response surface methodology. Polymer Testing, 78, https://doi.org/10.1016/j.polymertesting.2019.105989
  4. Balaguer, M.P., Lopez-Carballo, G., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2013). Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International Journal of Food Microbiology, 166(3), 369-377. https://doi.org/10.1016/j.ijfoodmicro.2013.08.012
  5. Chen, W., & Ma, S., Wang, Q., McClements, D., Xuebo, L., Ngai, T., & Liu, F. (2021). Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 62, 1-27. https://doi.org/10.1080/10408398.2021.1881435
  6. Cheng, J., & Cui, L. (2021). Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film, Ultrasonics Sonochemistry, https://doi.org/10.1016/j.ultsonch.2021.105809
  7. Chaudhary, P., Fatima, F., & Kumar, A. (2020). Relevance of nanomaterials in food packaging and its advanced future prospects. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 5180-5192. https://doi.org/10.1007/S10904-020-01674-8
  8. dos Santos Paglione, I., Galindo, M.V., de Medeiros, J.A.S., Yamashita, F., Alvim, I.D., Grosso, C.R.F., Sakanaka, L.S., & Shirai, M.A. (2019). Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packaging and Shelf Life, 22. https://doi.org/10.1016/j.fpsl.2019.100419
  9. Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131-140. https://doi.org/10.1016/J.FOODHYD.2017.01.003
  10. Farhan, A., & Hani, N.M. (2017). Characterization of edible packaging films based on semi-refined appa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids, 64, 48. https://doi.org/10.1016/j.foodhyd.2016.10.034
  11. Fazeli, M., Alizadeh, M., & Pirsa, S. (2022). Nanocomposite film based on gluten modified with Heracleum persicumessence/ MgO/ Polypyrrole: Investigation of physicochemical and electrical properties. Journal of Polymers and Environment, 30, 954-970. https://doi.org/10.1007/s10924-021-02253-9
  12. Galus, S., & Kadzińska, J. (2016). Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technology and Biotechnology, 54(1), 78-89. https://doi.org/10.17113/ftb.54.01.16.3889
  13. Garavand, F., Cacciotti, I., Vahedikia, N., Rehman, A., Tarhan, Ö., Akbari-Alavijeh, S., Shaddel, R., Rashidinejad, A., Nejatian, M., & Jafarzadeh, S. (2020). A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Critical Reviews in Food Science and Nutrition, 1-34. https://doi.org/10.1080/10408398.2020.1843133
  14. Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., Mousavi Khaneghah, A., & Jafari, M. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science and Technology, 120, 154-173. https://doi.org/10.1016/j.tifs.2022.01.013
  15. Hager, J.V., Rawles, S.D., Xiong, Y.L., Newman, M.C., Thompson, K.R., & Webster, C.D. (2019). Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops × Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin. Journal of the World Aquaculture Society, 50(3), 575-592. https://doi.org/10.1111/jwas.12573
  16. Han, Y., Yu, M., & Wang, L. (2018). Preparation and characterization of antioxidant soy protein isolate films incorporating licorice residue extract. Food Hydrocolloids, 75, 13-21. https://doi.org/10.1016/j.foodhyd.2017.09.020
  17. Hashemi Moosavi, M., Khani, M., Shokri, B., Hosseini, M., & Shojaee Aliabadi, S., Mirmoghtadaie, L. (2020). Modifications of protein-based films using cold plasma. International Journal of Biological Macromolecules, 142, 769-777. https://doi.org/10.1016/j.ijbiomac.2019.10.017
  18. Jariyasakoolroj, P., Leelaphiwat, P., & Harnkarnsujarit, N. (2020). Advances in research and development of bioplastic for food packaging. Journal of the Science of Food and Agriculture, 100, 5032-5045. https://doi.org/10.1002/jsfa.9497
  19. Jensen, A., Lim, L.T., Barbut, S., & Marcone, M. (2015). Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT - Food Science and Technology, 60, 162-170. https://doi.org/10.1016/j.lwt.2014.09.027
  20. Kaewprachu, P., Osako, K., Benjakul, S., Tongdeesoontorn, W., & Rawdkuen, S. (2016). Biodegradable protein-based films and their properties: a comparative study. Packaging Technology and Science, 29, 77-90. https://doi.org/10.1002/pts.2183
  21. Kao, M.J., Hsu, F.C., & Peng, D.X. (2014). Synthesis and characterization of Sio2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Advances in Materials Science and Engineering, 1-8. https://doi.org/10.1155/2014/691967
  22. Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2020). ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Reviews International, 1-29. https://doi.org/1080/87559129.2020.1737709
  23. Karimi, P., Zandi, M., & Ganjloo, A. (2022). Evaluation of physicochemical, mechanical, and antimicrobial properties of gelatin-sodium alginate-yarrow (Achillea millefolium) essential oil film. Journal of Food Processing and Preservation, 46(7), https://doi.org/10.1111/jfpp.16632
  24. Lee, J., & Kim, K.M. (2010). Characteristics of soy protein isolate‐montmorillonite composite films. Journal of Applied Polymer Science, 118, 2257-2263. https://doi.org/10.1002/app.31316
  25. Li, J., Jiang, S., Wei, Y., Li, X., Shi, S.Q., Zhang, W., & Li, J. (2021). Facile fabrication of tough, strong, and biodegradable soy protein-based composite films with excellent UV-blocking performance. Composites Part B: Engineering, 211, https://doi.org/10.1016/j.compositesb.2021.108645
  26. Li, X., Yang, X., Deng, H.,Guo, Y., & Xue, J. (2020). Gelatin films incorporated with thymol nanoemulsions: Physical properties and antimicrobial activities. International Journal of Bioligcal Micromolecules, 150, 161-168. https://doi.org/10.1016/j.ijbiomac. 2020.02.066
  27. Martelli-Tosi, M., Masson, M.M., Silva, N.C., Esposto, B.S., Barros, T.T., Assis, O.B.G., & Tapia-Blácido, D.R. (2018). Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, 198, 61-68. https://doi.org/10.1016/j.carbpol.2018.06.053
  28. Matías, L., Picchio, M., Linck, Y.G., Monti, G.A., Gugliotta, L.M., Minari, R.J., & Alvarezigarzabal, C.I. (2018). Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocolloids, 84, 424-434. https://doi.org/10.1016/j.foodhyd.2018.06.028
  29. Milani, J., & Sahraee, S. (2015). Functional edible coatings and films for fresh cut food products. Advances in Food Products, 37(2), 78-80. https://doi.org/1021/acsomega.3c03459
  30. Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. https://doi.org/10.1016/j.ijbiomac.2017.08.068
  31. Nor Adilah, A., Gun Hean, C., & Nur Hanani, Z.A. (2021). Incorporation of graphene oxide to enhance fish gelatin as bio-packaging material. Food Packaging and Shelf Life, 28, https://doi.org/10.1016/j.fpsl.2021.100679
  32. Ortiz, C.M., Salgado, P.R., Dufresne, A., & Mauri, A.N. (2018). Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids, 79, 416-427. https://doi.org/10.1016/j.foodhyd.2018.01.011
  33. Pengbo, C., Tianlun, S., Weilin, L., Mengyu, L., Mingxiao, Y., Weixue, Z., Yanzhuo, S., Yuting, D., & Jianhua, L. (2023). Advanced review on type II collagen and peptide: preparation, functional activities and food industry application, Critical Reviews in Food Science and Nutrition, 1-18. https://doi.org/10.1080/10408398.2023.2236699
  34. Rani, S., Kumar, K.D., Mandal, S., & Kumar, R. (2020). Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. Journal of Polymer Research, 27, 1-10. https://doi.org/10.1007/s10965-020-02276-1
  35. Sahraee, S., Milani, J., Regenstein, J., & Samadi Kafil, H. (2019). Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Bioscience, 32. https://doi.org/10.1016/j.fbio.2019.100451
  36. Salajegheh, F., Tajeddin, B., Panahi, B., & Karimi, H. (2020). Effect of edible coatings based on zein and chitosan and the use of Roman aniseed oil on the microbial activity of Mazafati dates. Journal of Food and Bioprocess Engineering, 3, 178-184. https://doi.org/22059/JFABE.2020.306636.1058
  37. Sani, I.K., Rasul, N.H., Asdagh, A., Pirsa, S., & Ghazanfarirad, N. (2021). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), https://doi.org/10.1088/2053-1591/ac50d6
  38. Sayadi, M., Mojaddar Langroodi, A., & Jafarpour, D. (2021). Impact of zein coating impregnated with ginger extract and Pimpinella anisum essential oil on the shelf life of bovine meat packaged in modified atmosphere. Journal of Food Measurement and Characterization, 1-14. https://doi.org/10.1007/s11694-021-01096-1
  39. Velaga, S.P., Nikjoo, D., & Vuddanda, P.R. (2018). Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS American Association of Pharmaceutical Scientists, 19, 425-435. https://doi.org/10.1208/s12249-017-0836-8
  40. Wang, Y., Zhao, X., Feng, Z., Lu, G., Sun, T., & Xu, Y. (2017). Crystalline-phase-induced formation of fibre-in-tube TiO 2–SnO 2 fibres for a humidity sensor. CrystEngComm, 19, 5528-5531. https://doi.org/10.1039/C7CE01106G
  41. Winotapun, C., Phattarateera, S., Aontee, A., Junsook, N., Daud, W., Kerddonfag, N., & Chinsirikul, W. (2019). Development of multilayer films with improved aroma barrier properties for durian packaging application. Packaging Technology and Science, 32, 405-418. https://doi.org/10.1002/pts.2452
  42. Xiao, Y., Liu, Y., Kang, S., Cui, M., & Xu, H. (2021). Development of pH-responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp freshness. Food Hydrocolloids, 120, https://doi.org/10.1016/j.foodhyd.2021.106893
  43. Xu, L., Zhang, H., Lv, X., Chi, Y., Wu, Y., & Shao, H. (2017). Internal quality of coated eggs with soy protein isolate and montmorillonite: effects of storage conditions. International Journal of Food Properties, 20, 1921-1934. https://doi.org/1080/10942912.2016.1224896
  44. Yang, W., Kenny, J. M., & Puglia, D. (2015). Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Industrial Crops and Products, 74, 348-356. https://doi.org/10.1016/j.indcrop.2015.05.032
  45. Yu, Y., Zheng, J., Li, J., Lu, L., Yan, J., Zhang, L., & Wang, L. (2021). Applications of two-dimensional materials in food packaging. Trends in Food Science & Technology, 110, 443-457. https://doi.org/10.1016/j.tifs.2021.02.021
CAPTCHA Image