نوع مقاله : مقاله پژوهشی
نویسندگان
گروه علوم و مهندسی صنایع غذایی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
هدف از این مطالعه تهیه نانوکپسولهای نانونیوزومی بهمنظور حفاظت از ترکیبات پلیفنلی و سپس ارزیابی ویژگیهای فیزیکی-شیمیایی نانونیوزومهای حاصله بود. 4 فرمول نانوذرات نیوزومی با استفاده از 140 میلیگرم سورفکتانتهای غیریونی اسپن 60 و توئین 80 با نسبت 1:3 و کلسترول به مقدار 0 (F1)، 10 (F2)، 20 (F3) و 30 (F4) (mg/mg 140 سورفکتانت) با استفاده از روش هیدراتاسیون لایه نازک تولید شد. اندازه ذرات، شاخص توزیع اندازه ذرات (PDI)، پتانسیل زتا و بازده ریزپوشانی روی نانونیوزمها ارزیابی شد. پس از انتخاب نانونیوزوم با بهترین خصوصیات، تصویربرداری میکروسکوپ الکترونی روبشی (SEM)، طیفسنجی مادون قرمز (FTIR) و پایداری شیمیایی نانونیوزمها در مدت 60 روز نگهداری بررسی شد. نتایج نشان داد که میانگین اندازه ذرات، PDI و پتانسیل زتا برای فرمولهای مختلف نانونیوزوم بهترتیب در محدوده 103.5-354 نانومتر، 0.17-0.92 و 50.35- تا 65.36- میلیولت قرار گرفت. مقدار بازده ریزپوشانی در دامنه 95-88% واقع شد که تیمار F3 دارای بیشینه بازده بوده و بر اساس اندازه ذرات، PDI و پتانسیل زتا بهعنوان نانونیوزم با بهترین خصوصیات برای سایر آزمونها انتخاب گردید. بر اساس نتایج FTIR در طیف نانونیوزوم (F3) حاوی پلیفنل پیکها تغییری نداشت و ترکیب پلیفنلی بهطور مناسبی در ساختار نانونیوزوم بدون تغییر ماهیت محصور شده بود. همچنین نتایج SEM وزیکولهای با ساختار یکنواخت و مناسب را نشان داد. نانونیوزوم (F3) حاوی پلیفنل در مدت 60 روز نگهداری در دمای محیط پایداری بالاتری نسبت به نمونه شاهد (پلیفنل) داشت که نشاندهنده توانایی بالای نانونیوزوم در حفظ ترکیبات پلیفنلی در زمان نگهداری بود و بهعنوان بهترین نمونه جهت حفاظت از ترکیبات پلیفنلی برای تولید غذاهای عملگرا میتواند مورد استفاده قرار گیرد. همچنین، بر اساس پروفایل رهایش نانوحاملهای توسعهیافته، بیشتر پلیفنلها در روده کوچک آزاد شدند؛ مدل کوپچا میتواند رفتار رهایش پلیفنل از نانو حاملهای ساختهشده را توصیف کند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Preparation of Nanoniosomes at different Cholesterol Concentrations Using the Thin-film Hydration Method for Nanoencapsulation of Pure Polyphenolic Compounds
نویسندگان [English]
- Zohre Ganjeh-Soltanabadi
- Rezvan Shaddel
- Younes Zahedi
Department of Food Science & Technology, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]
Introduction
Nowadays, the attention and desire of consumers to the role of food in health and nutrition has led the manufacturers to produce functional food and researchers to study this field. Polyphenols are secondary metabolites produced by many plants. They have anti-obesity, anti-inflammatory, anti-cancer and antioxidants activities. Despite all the mentioned benefits, due to the vulnerability of phenolic compounds to the environmental conditions and their low bioavailability in the digestive system, efforts have been made to encapsulate them with nanoniosomes. Encapsulation of polyphenolic compounds with nanoniosomes is an effective way to increase their stability and bioavailability as well ashinder their undesirable taste and smell. Niosomes are class of bi-layered structure formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules. This structure has two hydrophilic and hydrophobic properties, so it has the ability to be encapsulated with different solubility. Fortification food with polyphenols promotes community health. Therefore, the aim of this research was to produce nanoniosomes containing polyphenolic compounds, and to determine their important physical and chemical properties.
Materials and Methods
In this research, four polyphenol-loaded nanoniosomes were prepared using Span 60 and Tween 80 surfactants with a ratio of 3:1, and cholesterol with the concentration of 0, 10, 20 and 30 (mg/140 mg surfactant) as F1, F2, F3 and F4 treatments respectively. Physicochemical properties of the polyphenol-loaded niosomes (particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE)) were analyzed, and the formulation with the best characteristics was selected based on having the smallest size, less PDI and the highest EE. The selected formula was analyzed for morphology (scanning electron microscope (SEM)) and probably interactions (Fourier transforms infrared spectrometry (FTIR)). Additionally, the ability to preserve polyphenolic compounds as free or inside the nanonisomes during the storage period of 60 days was investigated. Further, the in vitro release of polyphenol from niosomes (gastric and intestinal simulated fluid) was also evaluated. The experiment was performed as completely randomized design (CRD) and the obtained data were analyzed with one-way analysis of variance (ANOVA).
Results and Discussion
Results indicated that the effect of using different amounts of cholesterol on the average particle size (Z-average) of nanonisomes was significant (p<0.05). With increasing cholesterol up to 20 mg (F1 to F3), the Z-average decreased, but with further increase to 30 mg (F4), the Z-average increased. Different concentrations of cholesterol showed significant influence on the PDI of nanonisomes. The minimum value was observed for F3 (20 mg cholesterol) and the maximum for F4. The incorporation of cholesterol in the nanonisomes decreased the zeta potential (p<0.05), dedicated an increased electrostatical stability of the particle, and the values were in the range of -50.35 to -65.36 mV. The value of EE was in the range of 88-95%, and F3 treatment had the maximum EE. Based on particle size, PDI, zeta potential and EE, F3 was selected as the best nanoparticle for other assays. According to the FTIR results, there was no change in the spectrum of nanonisome (F3) containing polyphenol peaks, and the polyphenols were properly enclosed in the nanonisomal vesicles without changing its nature. SEM results also showed vesicles with a uniform and appropriate structure. Nanonisome (F3) containing polyphenol was more stable than the control sample (polyphenol) during 60 days of storage at ambient temperature, which indicated the higher potential of nanonisomes to preserve the polyphenolic compounds during storage. The release behavior in the simulated digestive system (gastric and small intestine media) indicated a diffusion-based release system, and the Kopcha model was the best model to describe the release behavior of polyphenol from the fabricated niosomes in the simulated digestive environment.
Conclusion
According to the results of this research, it is concluded that nanoencapsulation of polyphenols as a rich source of antioxidant properties inside the nanonisomes can be an effective strategy to maintain their nutritional value. These nanonisomes can be utilized to produce functional foods, and the effects of their addition on the physico-chemical properties of a model food can be investigated.
کلیدواژهها [English]
- Antioxidant
- Bioactive
- Functional
- Nanoencapsulation
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Amjadi, S., Ghorbani, M., Hamishehkar, H., & Roufegarinejad, L. (2018). Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chemistry, 256, 156-16. https://doi.org/10.1016/j.foodchem.2018.02.114
- Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. (2011). Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28(7), 595-604. https://doi.org/3109/02652048.2011.557748
- Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581
- Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9-19. https://doi.org/10.1016/j.jddst.2020.101581
- Briuglia, M.-L., Rotella, C., McFarlane, A., & Lamprou, D.A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5, 231-242. https://doi.org/10.1007/s13346-015-0220-8
- Chen, S., Hanning, S., Falconer, J., Locke, M., & Wen, J. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18-39. https://doi.org/10.1016/j.ejpb.2019.08.015
- Clifford, T., Constantinou, C.M., Keane, K.M., West, D.J., Howatson, G., & Stevenson, E.J. (2017). The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. European Journal of Nutrition, 56, 1245-1254. https://doi.org/10.1007/s00394-016-1173-5
- Danaee, M., Farzinebrahimi, R., Kadir, M.A., Sinniah, U.R., Mohamad, R., & Mat Taha, R. (2015). Effects of MeJA and SA elicitation on secondary metabolic activity, antioxidant content and callogenesis in Phyllanthus pulcher. Brazilian Journal of Botany, 38, 265-272. https://doi.org/10.1007/s40415-015-0140-3
- Elmi, N., Ghanbarzadeh, B., Ayaseh, A., Sahraee, S., Heshmati, M.K., Hoseini, M., & Pezeshki, A. (2021). Physical properties and stability of quercetin loaded niosomes: stabilizing effects of phytosterol and polyethylene glycol in orange juice model. Journal of Food Engineering, 296, 110463. https://doi.org/10.1016/j.jfoodeng.2020.110463
- Essa, E.A. (2010). Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian Journal of Pharmaceutics (AJP), 4 (4). https://doi.org/10.22377/ajp.v4i4.289
- Fan, M., Xu, S., Xia, S., & Zhang, X. (2008). Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. European Food Research and Technology, 227, 167-174. https://doi.org/10.1007/s00217-007-0706-9
- Gorjian, H., Amiri, Z.R., Milani, J.M., & Khaligh, N.G. (2021). Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study. Food Chemistry, 342, 128342. https://doi.org/10.1016/j.foodchem. 2020.128342
- Imran, M., Shah, M.R., Ullah, F., Ullah, S., Elhissi, A.M., Nawaz, W., Ahmad, F., Sadiq, A., & Ali, I. (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. International Journal of Pharmaceutics, 505(1-2), 122-132. https://doi.org/10.1016/j.ijpharm.2016.03.042
- Khan, M.I., Madni, A., & Peltonen, L. (2016). Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. European Journal of Pharmaceutical Sciences, 95, 88-95. https://doi.org/10.1016/j.ejps.2016.09.002
- Khoee, S., & Yaghoobian, M. (2017). Niosomes: A novel approach in modern drug delivery systems. In Nanostructures for drug delivery (pp. 207-237). Elsevier.https://doi.org/10.1016/B978-0-323-46143-6.00006-3
- Laridi, R., Kheadr, E., Benech, R.-O., Vuillemard, J., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal, 13(4), 325-336. https://doi.org/10.1016/S0958-6946(02)00194-2
- Lashkari H. (2022). Crocin encapsulation in niosome and liposome carriers and investigation of their properties. Journal of Food Science and Technology (Iran), 19(128), 171-182. https://doi.org/22034/FSCT.19.128.171
- Lubbers, S., & Guichard, E. (2003). The effects of sugars and pectin on flavour release from a fruit pastille model system. Food Chemistry, 81(2), 269-273. https://doi.org/10.1016/S0308-8146(02)00422-3
- Maqamikia, H., Hakimzadeh, V., Arianfar, A., Rajabzade, Q., & Shahidi-Noghabi, M. (2021). Improving the stability and bioaccessibility of vitamin D3 in the structure of nanoniosomes designed by different surfactants, Research and Innovation in Food Science and Technology (JRIFST), 10(3), 249-260. https://doi.org/22101/JRIFST.2020.254761.1195
- Moghassemi, S., Hadjizadeh, A., & Omidfar, K. (2017). Formulation and characterization of bovine serum albumin-loaded niosome. Aaps Pharmscitech, 18, 27-33. https://doi.org/10.1208/s12249-016-0487-1
- Molaveisi, M., Noghabi, M.S., Parastouei, K., & Taheri, R.A. (2021). Fate of nanophytosomes containing bioactive compounds of Echinacea extract in an acidic food beverage. Food Structure, 27, 100177. https://doi.org/10.1016/j.foostr.2021.100177
- Mozafari, M.R. (2010). Nanoliposomes: preparation and analysis. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers, 29-50. https://doi.org/10.1007/978-1-60327-360-2_2
- Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793-829. https://doi.org/10.3390/pharmaceutics3040793
- Mustafa, S.K., Oyouni, A.A.W.A., Aljohani, M.M., & Ahmad, M.A. (2020). Polyphenols more than an Antioxidant: Role and Scope. Journal of Pure and Applied Microbiology, 14(1). https://doi.org/10.22207/JPAM.14.1.08
- Nakhaei, P., Margiana, R., Bokov, D.O., Abdelbasset, W.K., Jadidi Kouhbanani, M.A., Varma, R.S., Marofi, F., Jarahian, M., & Beheshtkhoo, N. (2021). Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology, 9, 705886. https://doi.org/10.3389/fbioe.2021.705886
- Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265
- Nowroozi, F., Almasi, A., Javidi, J., Haeri, A., & Dadashzadeh, S. (2018). Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian Journal of Pharmaceutical Research: IJPR, 17(Suppl2), 1. https://doi.org/10.22037/IJPR.2018.2368
- Pascua, Y., Koç, H., & Foegeding, E.A. (2013). Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid and Interface Science, 18(4), 324-333. https://doi.org/10.1016/j.cocis.2013.03.009
- Patel, K.K., Kumar, P., & Thakkar, H.P. (2012). Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 13(4), 1502–1510. https://doi.org/10.1208/s12249-012-9871-7
- Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience, 13, 49-55. https://doi.org/10.1016/j.fbio.2015.12.002
- Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586-621. https://doi.org/10.1002/anie.201000044
- Ramli, N., Ali, N., Hamzah, S., & Yatim, N. (2021). Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06649
- Ravaghi, M., Razavi, S.H., Mousavi, S.M., Sinico, C., & Fadda, A.M. (2016). Stabilization of natural canthaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. LWT, 73, 498-504. https://doi.org/10.1016/j.lwt.2016.06.027
- Seyedabadi, M.M., Rostami, H., Jafari, S.M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 40, 100857. https://doi.org/10.1016/j.fbio.2020.100857
- Sguizzato, M., Esposito, E., & Cortesi, R. (2021). Lipid-based nanosystems as a tool to overcome skin barrier. International Journal of Molecular Sciences, 22(15), 8319. https://doi.org/10.3390/ijms22158319
- Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044
- Shahidi, F., & Naczk, M. (2003). Phenolics in food and nutraceuticals. CRC press. https://doi.org/10.1201/9780203508732
- Shahidi, F., & Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216. https://doi.org/10.3390/molecules21091216
- Sozer, N., & Kokini, J.L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. https://doi.org/10.1016/j.tibtech.2008.10.010
- Subramaniam, P. (2016). The stability and shelf life of confectionery products. In The stability and shelf life of food (pp. 545-573). Elsevier. https://doi.org/10.1016/B978-0-08-100435-7.00019-8
- Vetrani, C., Rivellese, A.A., Annuzzi, G., Mattila, I., Meudec, E., Hyötyläinen, T., Orešič, M., & Aura, A.M. (2014). Phenolic metabolites as compliance biomarker for polyphenol intake in a randomized controlled human intervention. Food Research International, 63, 233-238. https://doi.org/10.1016/j.foodres.2014.01.018
- Williams, R.J., Spencer, J.P., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free radical biology and medicine, 36(7), 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
- Zahedi, Y., Shaddel, R., Salamatian, M., & Szumny, A. (2024). Nanoliposomal encapsulation of Capparis spinosa extract and its application in jelly formulation. Molecules, 29(12), 2804. https://doi.org/10.3390/molecules29122804
ارسال نظر در مورد این مقاله