با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

هدف از این مطالعه تهیه نانوکپسول­‌های نانونیوزومی به‌منظور حفاظت از ترکیبات پلی­فنلی و سپس ارزیابی ویژگی‌های فیزیکی-شیمیایی نانونیوزوم­‌های حاصله بود. 4 فرمول نانوذرات نیوزومی با استفاده از 140 میلی­گرم سورفکتانت‌های غیریونی اسپن 60 و توئین 80 با نسبت 1:3 و کلسترول به مقدار 0 (F1)، 10 (F2)، 20 (F3) و 30 (F4) (mg/mg 140 سورفکتانت) با استفاده از روش هیدراتاسیون لایه نازک تولید شد. اندازه ذرات، شاخص توزیع اندازه ذرات (PDI)، پتانسیل زتا و بازده ریزپوشانی روی نانونیوزم‌ها ارزیابی شد. پس از انتخاب نانونیوزوم با بهترین خصوصیات، تصویربرداری میکروسکوپ الکترونی روبشی (SEM)، طیف­‌سنجی مادون قرمز (FTIR) و پایداری شیمیایی نانونیوزم‌ها در مدت 60 روز نگهداری بررسی شد. نتایج نشان داد که میانگین اندازه ذرات، PDI و پتانسیل زتا برای فرمول­‌های مختلف نانونیوزوم‌ به‌ترتیب در محدوده 103.5-354 نانومتر، 0.17-0.92 و 50.35- تا 65.36- میلی­‌ولت قرار گرفت. مقدار بازده ریزپوشانی در دامنه 95-88% واقع شد که تیمار F3 دارای بیشینه بازده بوده و بر اساس اندازه ذرات، PDI و پتانسیل زتا به‌عنوان نانونیوزم با بهترین خصوصیات برای سایر آزمون­‌ها انتخاب گردید. بر اساس نتایج FTIR در طیف نانونیوزوم (F3) حاوی پلی‌فنل پیک‌ها تغییری نداشت و ترکیب پلی­فنلی به‌طور مناسبی در ساختار نانونیوزوم بدون تغییر ماهیت محصور شده بود. همچنین نتایج SEM وزیکول‌های با ساختار یکنواخت و مناسب را نشان داد. نانونیوزوم (F3) حاوی پلی‌فنل در مدت 60 روز نگهداری در دمای محیط پایداری بالاتری نسبت به نمونه شاهد (پلی­فنل) داشت که نشان‌دهنده توانایی بالای نانونیوزوم در حفظ ترکیبات پلی‌فنلی در زمان نگهداری بود و به‌عنوان بهترین نمونه جهت حفاظت از ترکیبات پلی­فنلی برای تولید غذاهای عملگرا می­تواند مورد استفاده قرار گیرد. همچنین، بر اساس پروفایل رهایش نانوحامل­های توسعه‌یافته، بیشتر پلی‌فنل­ها در روده کوچک آزاد شدند؛ مدل کوپچا می­‌تواند رفتار رهایش پلی­فنل از نانو حامل­‌های ساخته‌شده را توصیف کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Preparation of Nanoniosomes at different Cholesterol Concentrations Using the Thin-film Hydration Method for Nanoencapsulation of Pure Polyphenolic Compounds

نویسندگان [English]

  • Zohre Ganjeh-Soltanabadi
  • Rezvan Shaddel
  • Younes Zahedi

Department of Food Science & Technology, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

Introduction
Nowadays, the attention and desire of consumers to the role of food in health and nutrition has led the manufacturers to produce functional food and researchers to study this field. Polyphenols are secondary metabolites produced by many plants. They have anti-obesity, anti-inflammatory, anti-cancer and antioxidants activities. Despite all the mentioned benefits, due to the vulnerability of phenolic compounds to the environmental conditions and their low bioavailability in the digestive system, efforts have been made to encapsulate them with nanoniosomes. Encapsulation of polyphenolic compounds with nanoniosomes is an effective way to increase their stability and bioavailability as well ashinder their undesirable taste and smell. Niosomes are class of bi-layered structure formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules. This structure has two hydrophilic and hydrophobic properties, so it has the ability to be encapsulated with different solubility. Fortification food with polyphenols promotes community health. Therefore, the aim of this research was to produce nanoniosomes containing polyphenolic compounds, and to determine their important physical and chemical properties.
Materials and Methods
In this research, four polyphenol-loaded nanoniosomes were prepared using Span 60 and Tween 80 surfactants with a ratio of 3:1, and cholesterol with the concentration of 0, 10, 20 and 30 (mg/140 mg surfactant) as F1, F2, F3 and F4 treatments respectively. Physicochemical properties of the polyphenol-loaded niosomes (particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE)) were analyzed, and the formulation with the best characteristics was selected based on having the smallest size, less PDI and the highest EE. The selected formula was analyzed for morphology (scanning electron microscope (SEM)) and probably interactions (Fourier transforms infrared spectrometry (FTIR)). Additionally, the ability to preserve polyphenolic compounds as free or inside the nanonisomes during the storage period of 60 days was investigated. Further, the in vitro release of polyphenol from niosomes (gastric and intestinal simulated fluid) was also evaluated. The experiment was performed as completely randomized design (CRD) and the obtained data were analyzed with one-way analysis of variance (ANOVA).
Results and Discussion
Results indicated that the effect of using different amounts of cholesterol on the average particle size (Z-average) of nanonisomes was significant (p<0.05). With increasing cholesterol up to 20 mg (F1 to F3), the Z-average decreased, but with further increase to 30 mg (F4), the Z-average increased. Different concentrations of cholesterol showed significant influence on the PDI of nanonisomes. The minimum value was observed for F3 (20 mg cholesterol) and the maximum for F4. The incorporation of cholesterol in the nanonisomes decreased the zeta potential (p<0.05), dedicated an increased electrostatical stability of the particle, and the values were in the range of -50.35 to -65.36 mV. The value of EE was in the range of 88-95%, and F3 treatment had the maximum EE. Based on particle size, PDI, zeta potential and EE, F3 was selected as the best nanoparticle for other assays. According to the FTIR results, there was no change in the spectrum of nanonisome (F3) containing polyphenol peaks, and the polyphenols were properly enclosed in the nanonisomal vesicles without changing its nature. SEM results also showed vesicles with a uniform and appropriate structure. Nanonisome (F3) containing polyphenol was more stable than the control sample (polyphenol) during 60 days of storage at ambient temperature, which indicated the higher potential of nanonisomes to preserve the polyphenolic compounds during storage. The release behavior in the simulated digestive system (gastric and small intestine media) indicated a diffusion-based release system, and the Kopcha model was the best model to describe the release behavior of polyphenol from the fabricated niosomes in the simulated digestive environment.
Conclusion
According to the results of this research, it is concluded that nanoencapsulation of polyphenols as a rich source of antioxidant properties inside the nanonisomes can be an effective strategy to maintain their nutritional value. These nanonisomes can be utilized to produce functional foods, and the effects of their addition on the physico-chemical properties of a model food can be investigated.

کلیدواژه‌ها [English]

  • Antioxidant
  • Bioactive
  • Functional
  • Nanoencapsulation

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Amjadi, S., Ghorbani, M., Hamishehkar, H., & Roufegarinejad, L. (2018). Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chemistry, 256, 156-16. https://doi.org/10.1016/j.foodchem.2018.02.114
  2. Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. (2011). Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28(7), 595-604. https://doi.org/3109/02652048.2011.557748
  3. Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581
  4. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9-19. https://doi.org/10.1016/j.jddst.2020.101581
  5. Briuglia, M.-L., Rotella, C., McFarlane, A., & Lamprou, D.A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5, 231-242. https://doi.org/10.1007/s13346-015-0220-8
  6. Chen, S., Hanning, S., Falconer, J., Locke, M., & Wen, J. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18-39. https://doi.org/10.1016/j.ejpb.2019.08.015
  7. Clifford, T., Constantinou, C.M., Keane, K.M., West, D.J., Howatson, G., & Stevenson, E.J. (2017). The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. European Journal of Nutrition, 56, 1245-1254. https://doi.org/10.1007/s00394-016-1173-5
  8. Danaee, M., Farzinebrahimi, R., Kadir, M.A., Sinniah, U.R., Mohamad, R., & Mat Taha, R. (2015). Effects of MeJA and SA elicitation on secondary metabolic activity, antioxidant content and callogenesis in Phyllanthus pulcher. Brazilian Journal of Botany, 38, 265-272. https://doi.org/10.1007/s40415-015-0140-3
  9. Elmi, N., Ghanbarzadeh, B., Ayaseh, A., Sahraee, S., Heshmati, M.K., Hoseini, M., & Pezeshki, A. (2021). Physical properties and stability of quercetin loaded niosomes: stabilizing effects of phytosterol and polyethylene glycol in orange juice model. Journal of Food Engineering, 296, 110463. https://doi.org/10.1016/j.jfoodeng.2020.110463
  10. Essa, E.A. (2010). Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian Journal of Pharmaceutics (AJP), 4 (4). https://doi.org/10.22377/ajp.v4i4.289
  11. Fan, M., Xu, S., Xia, S., & Zhang, X. (2008). Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. European Food Research and Technology, 227, 167-174. https://doi.org/10.1007/s00217-007-0706-9
  12. Gorjian, H., Amiri, Z.R., Milani, J.M., & Khaligh, N.G. (2021). Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study. Food Chemistry, 342, 128342. https://doi.org/10.1016/j.foodchem. 2020.128342
  13. Imran, M., Shah, M.R., Ullah, F., Ullah, S., Elhissi, A.M., Nawaz, W., Ahmad, F., Sadiq, A., & Ali, I. (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. International Journal of Pharmaceutics, 505(1-2), 122-132. https://doi.org/10.1016/j.ijpharm.2016.03.042
  14. Khan, M.I., Madni, A., & Peltonen, L. (2016). Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. European Journal of Pharmaceutical Sciences, 95, 88-95. https://doi.org/10.1016/j.ejps.2016.09.002
  15. Khoee, S., & Yaghoobian, M. (2017). Niosomes: A novel approach in modern drug delivery systems. In Nanostructures for drug delivery (pp. 207-237). Elsevier.https://doi.org/10.1016/B978-0-323-46143-6.00006-3
  16. Laridi, R., Kheadr, E., Benech, R.-O., Vuillemard, J., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal, 13(4), 325-336. https://doi.org/10.1016/S0958-6946(02)00194-2
  17. Lashkari H. (2022). Crocin encapsulation in niosome and liposome carriers and investigation of their properties. Journal of Food Science and Technology (Iran), 19(128), 171-182. https://doi.org/22034/FSCT.19.128.171
  18. Lubbers, S., & Guichard, E. (2003). The effects of sugars and pectin on flavour release from a fruit pastille model system. Food Chemistry, 81(2), 269-273. https://doi.org/10.1016/S0308-8146(02)00422-3
  19. Maqamikia, H., Hakimzadeh, V., Arianfar, A., Rajabzade, Q., & Shahidi-Noghabi, M. (2021). Improving the stability and bioaccessibility of vitamin D3 in the structure of nanoniosomes designed by different surfactants, Research and Innovation in Food Science and Technology (JRIFST), 10(3), 249-260. https://doi.org/22101/JRIFST.2020.254761.1195
  20. Moghassemi, S., Hadjizadeh, A., & Omidfar, K. (2017). Formulation and characterization of bovine serum albumin-loaded niosome. Aaps Pharmscitech, 18, 27-33. https://doi.org/10.1208/s12249-016-0487-1
  21. Molaveisi, M., Noghabi, M.S., Parastouei, K., & Taheri, R.A. (2021). Fate of nanophytosomes containing bioactive compounds of Echinacea extract in an acidic food beverage. Food Structure, 27, 100177. https://doi.org/10.1016/j.foostr.2021.100177
  22. Mozafari, M.R. (2010). Nanoliposomes: preparation and analysis. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers, 29-50. https://doi.org/10.1007/978-1-60327-360-2_2
  23. Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793-829. https://doi.org/10.3390/pharmaceutics3040793
  24. Mustafa, S.K., Oyouni, A.A.W.A., Aljohani, M.M., & Ahmad, M.A. (2020). Polyphenols more than an Antioxidant: Role and Scope. Journal of Pure and Applied Microbiology, 14(1). https://doi.org/10.22207/JPAM.14.1.08
  25. Nakhaei, P., Margiana, R., Bokov, D.O., Abdelbasset, W.K., Jadidi Kouhbanani, M.A., Varma, R.S., Marofi, F., Jarahian, M., & Beheshtkhoo, N. (2021). Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology, 9, 705886. https://doi.org/10.3389/fbioe.2021.705886
  26. Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265
  27. Nowroozi, F., Almasi, A., Javidi, J., Haeri, A., & Dadashzadeh, S. (2018). Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian Journal of Pharmaceutical Research: IJPR, 17(Suppl2), 1. https://doi.org/10.22037/IJPR.2018.2368
  28. Pascua, Y., Koç, H., & Foegeding, E.A. (2013). Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid and Interface Science, 18(4), 324-333. https://doi.org/10.1016/j.cocis.2013.03.009
  29. Patel, K.K., Kumar, P., & Thakkar, H.P. (2012). Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 13(4), 1502–1510. https://doi.org/10.1208/s12249-012-9871-7
  30. Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience, 13, 49-55. https://doi.org/10.1016/j.fbio.2015.12.002
  31. Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586-621. https://doi.org/10.1002/anie.201000044
  32. Ramli, N., Ali, N., Hamzah, S., & Yatim, N. (2021). Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06649
  33. Ravaghi, M., Razavi, S.H., Mousavi, S.M., Sinico, C., & Fadda, A.M. (2016). Stabilization of natural canthaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. LWT, 73, 498-504. https://doi.org/10.1016/j.lwt.2016.06.027
  34. Seyedabadi, M.M., Rostami, H., Jafari, S.M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 40, 100857. https://doi.org/10.1016/j.fbio.2020.100857
  35. Sguizzato, M., Esposito, E., & Cortesi, R. (2021). Lipid-based nanosystems as a tool to overcome skin barrier. International Journal of Molecular Sciences, 22(15), 8319. https://doi.org/10.3390/ijms22158319
  36. Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044
  37. Shahidi, F., & Naczk, M. (2003). Phenolics in food and nutraceuticals. CRC press. https://doi.org/10.1201/9780203508732
  38. Shahidi, F., & Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216. https://doi.org/10.3390/molecules21091216
  39. Sozer, N., & Kokini, J.L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. https://doi.org/10.1016/j.tibtech.2008.10.010
  40. Subramaniam, P. (2016). The stability and shelf life of confectionery products. In The stability and shelf life of food (pp. 545-573). Elsevier. https://doi.org/10.1016/B978-0-08-100435-7.00019-8
  41. Vetrani, C., Rivellese, A.A., Annuzzi, G., Mattila, I., Meudec, E., Hyötyläinen, T., Orešič, M., & Aura, A.M. (2014). Phenolic metabolites as compliance biomarker for polyphenol intake in a randomized controlled human intervention. Food Research International, 63, 233-238. https://doi.org/10.1016/j.foodres.2014.01.018
  42. Williams, R.J., Spencer, J.P., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free radical biology and medicine, 36(7), 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  43. Zahedi, Y., Shaddel, R., Salamatian, M., & Szumny, A. (2024). Nanoliposomal encapsulation of Capparis spinosa extract and its application in jelly formulation. Molecules, 29(12), 2804. https://doi.org/10.3390/molecules29122804
CAPTCHA Image