نوع مقاله : مقاله پژوهشی
نویسنده
گروه علوم و صنایع غذایی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
چکیده
از عمدهترین مشکلات ماهی با وجود ارزش تغذیهای بالا، فسادپذیری در دوره نگهداری است. هدف از پژوهش حاضر بکارگیری پوشش زیستتخریبپذیر کیتوزان/موسیلاژ چیا حاوی عصاره گیاه روناس Rubia tinctorum L. (غلظتهای 0، 0.5، 1 و 2 درصد) بر روی فیله ماهی هامور بهمنظور حفظ خصوصیات کیفی و میکروبی در مدت زمان ماندگاری (1، 15، 30 و 45 روز) بود. بر روی نمونهها بررسیهای فیزیکوشیمیایی (اندیس پراکسید (meq O2/kg sample)، اندیس اسید تیوباربیتوریک (mg MA/kg)، نیتروژن کل فرار (mg /100 g) و تری متیل آمین (mg /100 g))، بافت (سختی، چسبندگی، انعطافپذیری، انسجام و صمغی بودن)، شمارش میکروبی (باکتریهای میانه دوست هوازی، کپک و مخمر، کلی فرم و باکتریهای اسید لاکتیک)، خصوصیات حسی (مزه، بو، رنگ، بافت و ارزیابی کلی) و شناسایی و اندازهگیری آمینهای بیوژن در مدت زمان نگهداری انجام پذیرفت. نتایج نشان داد با افزایش درصد عصاره، در یک بازه زمانی ثابت، پارامترهای اکسیداسیون تیمارها مانند اندیس پراکسید، تری متیل آمین، ترکیبات ازته فرار کل و اندیس اسید تیوباربیتوریک کاهش پیدا کرد (0.05 < p). از سوی دیگر کاهش ویژگیهای بافتی بهویژه سختی و انسجام با از دست دادن رطوبت و خشکشدن پوشش سطحی نمونهها در طول دوره نگهداری رخ داد و شمارش میکروبی به شکل معنیداری افزایش یافت (0.05 < p). در نهایت تیمار فیله ماهی دارای پوشش 1 درصد عصاره گیاه روناس در مقایسه با سایر تیمارها ویژگیهای حسی مناسب تری را در انتهای دوره نگهداری نشان داد و بهعنوان تیمار برتر انتخاب شد. نوع و میزان آمینهای بیوژن در نمونههای شاهد و برتر نشان داد بیشترین ترکیب آمین، هیستامین به میزان (mg/kg) 79.87 در روز پانزدهم و کمترین آن، تیرامین به میزان (mg/kg) 0.79 در روز نخست نگهداری ثبت شده است. نتایج کلی نشان داد که بهکارگیری پوشش کیتوزان/موسیلاژ چیا حاوی عصاره روناس بر افزایش ماندگاری فیله ماهی تأثیرگذار است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Shelf Life Extension of Grouper Fish Fillet (Epinephelus coioides) Using Biodegradable Chitosan/Chia Mucilage Coating Containing Rubia tinctorum L. Plant Extract
نویسنده [English]
- Marjan Nouri
Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]
Introduction
Fish supplies a type of nutrients containing protein and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) and micronutrients such as selenium, iodine, potassium, D and B-vitamins. Groupers are one of the best fishes in the south of Iran that are extensively distributed in tropical and warm waters all over the world. The perishability is considered as one of the main problems for fish with high nutritional value in food supply chains during the shelf life. The use of edible coatings indicates a novel method to extend the shelf life. The aim of present research was to apply biodegradable chitosan/ chia mucilage coating containing Rubia tinctorum L. plant extract (0, 0.5, 1 and 2 % as T1, T2, T3 and also T4) on the surface of grouper fillet fish to maintain qualitative and microbial attributes during the shelf life (1, 15, 30 and 45 days).
Materials and Methods
The qualitative and qualitative assays (peroxide index (meq O2/kg sample), thiobarbituric acid (mg MA/kg), total volatile nitrogen (mg /100 g) and trimethylamine (mg /100 g)), microbial counts (aerobic mesophilic and lactic acid bacteria, total coliforms, mold and also yeast), texture (hardness, adhesion, flexibility, cohesiveness and gumminess), sensory attributes (taste, smell, color, texture and overall evaluation) and measurement of identified biogenic amines were carried out during the shelf life.
Results and Discussion
The results illustrated that oxidation parameters of treatments such as peroxide index, trimethylamine, total volatile nitrogen components and thiobarbituric acid were declined by increasing the extract concentration in a fixed time period (p ≥ 0.05). The highest and lowest microbial loads were obtained in T1 and T4 during the storage, respectively. The microbial counts increased significantly (p < 0.05) by extending the storage time of treatments and on the other hand, this decreased significantly (p < 0.05) by increasing the concentration of Rubia tinctorum L. extract in a fixed period of time. The utilization of Rubia tinctorum L. extract and chia mucilage in a coating of chitosan created a synergistic effect and led to a lower microbial load in treatments. On the other hand, a reduction was occurred in textural attributes particularly cohesiveness and hardness through moisture loss and drying of coating surface in fillets during storage (p < 0.05). The softening tissue could be related to the higher microbial activities during storage, although intensity of these changes was lower in T3 and T4 treatments due to the lower microbial load, which indicated the positive effect of Rubia tinctorum L. extract on maintaining tissue quality. All examined factors changed and most of the mentioned parameters in T1 and T2 exceeded the permissible limit during storage, but T3 and T4 had better conditions during storage. Finally, fish fillet coated with 1 % Rubia tinctorum L. extract (T3) compared to others demonstrated better sensory evaluation at the end of shelf life, which was selected as the superior treatment. The type and amount of biogenic amines in control and T3 (superior sample) illustrated that the highest amine compound was recorded for histamine at 79.87 (mg/kg) on the 15th day and the lowest level in tyramine at 0.79 (mg/kg) on the 1st day of storage. The concentration of amines increased significantly during storage time (p < 0.05).
Conclusion
The results shown that applying chitosan/ chia mucilage coating including Rubia tinctorum L. extract has significant effect on extending the shelf life of fish fillets.
کلیدواژهها [English]
- Anitoxidant
- Edible coating
- Grouper fillet
- Rubia tinctorum L
- Shelf life
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abdollahzadeh, M., Elhamirad, A. H., Shariatifar, N., Saeidiasl, M., & Armin, M. (2023). Effects of nano-chitosan coatings incorporating with free/nano-encapsulated essential oil of Golpar (Heracleum persicum ) on quality characteristics and safety of rainbow trout (Oncorhynchus mykiss). International Journal of Food Microbiology, 385, 109996. https://doi.org/10.1016/j.ijfoodmicro.2022.109996
- Cao, X., Islam, M.N., Chitrakar, B., Duan, Z., Xu, W., & Zhong, S. (2020). Effect of combined chlorogenic acid and chitosan coating on antioxidant, antimicrobial, and sensory properties of snakehead fish in cold storage. Food Science & Nutrition, 8(2), 973-981. https://doi.org/10.1002/fsn3.1378
- Chaijan, S., Panpipat, W., Panya, A., Cheong, L.Z., & Chaijan, M. (2020). Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control, 118, 107400. https://doi.org/10.1016/j.foodcont.2020.107400
- Chen, X., Lan, W., Xu, Z., Li, H., & Xie, J. (2024). Effects of active film based on chitosan/polyvinyl alcohol on the quality of refrigerated sea bass (Lateolabrax Japonicus) fillets. Food Bioscience, 59, 103854. https://doi.org/10.1016/j.fbio.2024.103854
- Chieng, C.C. Y., Daud, H.M., Yusoff, F.M., & Abdullah, M. (2018). Immunity, feed, and husbandry in fish health management of cultured Epinephelus fuscoguttatus with reference to Epinephelus coioides. Aquaculture and Fisheries, 3(2), 51-61. https://doi.org/10.1016/j.aaf.2018.01.003
- Ebadi, Z., Khodanazary, A., Hosseini, S.M., & Zanguee, N. (2019). The shelf life extension of refrigerated Nemipterus japonicus fillets by chitosan coating incorporated with propolis extract. International Journal of Biological Macromolecules, 139, 94-102. https://doi.org/10.1016/j.ijbiomac.2019.07.204
- El-Obeid, T., Yehia, H.M., Sakkas, H., Lambrianidi, L., Tsiraki, M.I., & Savvaidis, I.N. (2018). Shelf-life of smoked eel fillets treated with chitosan or thyme oil. International Journal of Biological Macromolecules, 114, 578-583. https://doi.org/10.1016/j.ijbiomac.2018.03.125
- Hoseinzadeh, A., Sadeghipour, Y., & Behbudi, G. (2020). Investigation preliminary antimicrobial and anticancer properties: on Topic Rubia tinctorum plant by using Polydimethylsiloxane (CAR/PDMS). Advances in Applied NanoBio-Technologies, 1(1), 10-19. https://doi.org/10.47277/AANBT/1(1)14
- Houari, F.Z., Erenler, R., & Hariri, A. (2022). Biological activities and chemical composition of Rubia tinctorum (L) root and aerial part extracts thereof. Acta Biológica Colombiana, 27(3), 403-414. https://doi.org/10.15446/abc.v27n3.95476
- Hu, Y., Huang, Z., Li, J., & Yang, H. (2012). Concentrations of biogenic amines in fish, squid and octopus and their changes during storage. Food Chemistry, 135(4), 2604-2611. https://doi.org/10.1016/j.foodchem.2012.06.121
- Kabiri, S., Rahimi, S., & Fadaei Noghani, V. (2019). Studying the Madder extract application as a natural colorant on qualitative properties of flavoured milk-based dessert. Journal of Food Science and Technology (Iran), 16(89), 225-236.
- Karim, A., Mekhfi, H., Ziyyat, A., Legssyer, A., Bnouham, M., Amrani, S., Atmani, F., Melhaoui, A., & Aziz, M. (2010). Anti-diarrhoeal activity of crude aqueous extract of Rubia tinctorum roots in rodents. Journal of Smooth Muscle Research, 46(2), 119-123. https://doi.org/10.1540/jsmr.46.119
- Krell, T., Gavira, J.A., Velando, F., Fernández, M., Roca, A., Monteagudo-Cascales, E., & Matilla, M.A. (2021). Histamine: a bacterial signal molecule. International Journal of Molecular Sciences, 22(12), 6312. https://doi.org/10.3390/ijms22126312
- Marhoume, F.Z., Aboufatima, R., Zaid, Y., Limami, Y., Duval, R.E., Laadraoui, J., Belbachir, A., Chait, A., & Bagri, A. (2021). Antioxidant and polyphenol-rich ethanolic extract of Rubia tinctorum prevents urolithiasis in an ethylene glycol experimental model in Rats. Molecules, 26(4), 1005. https://doi.org/10.3390/molecules26041005
- Mietz, J.L., & Karmas, E. (1978). Polyamine and histamine content of rockfish, salmon, lobster, and shrimp as an indicator of decomposition. Journal of the Association of Official Analytical Chemists, 61(1), 139-145. https://doi.org/10.1093/jaoac/61.1.139
- Morachis-Valdez, A.G., Santillán-Álvarez, Á., Gómez-Oliván, L.M., García-Argueta, I., Islas-Flores, H., & Dublán-García, O. (2021). Effects of peppermint extract and chitosan-based edible coating on storage quality of common Carp (Cyprinus carpio) fillets. Polymers, 13(19), 3243. https://doi.org/10.3390/polym13193243
- Mujtaba, M., Ali, Q., Yilmaz, B.A., Kurubas, M.S., Ustun, H., Erkan, M., Kaya, M., Cicek, M., & Oner, E.T. (2023). Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chemistry, 416, 135816. https://doi.org/10.1016/j.foodchem.2023.135816
- Nawaz, T., Fatima, M., Shah, S.Z.H., & Afzal, M. (2020). Coating effect of rosemary extract combined with chitosan on storage quality of mori (Cirrhinus mrigala). Journal of Food Processing and Preservation, 44(10), 14833. https://doi.org/10.1111/jfpp.14833
- Rastegari, S., Alichi, M., Samih, M. A., Minaei, K., & Saharkhiz, J. (2015). Toxicity effect of henna, Lawsonia inermis and madder Rubia tinctorum L. extracts on Rhopalosiphum padi L. versus pesticidal effect of pirimicarb and imidacloprid. Plant Protection (Scientific Journal of Agriculture), 38(4), 55-66. https://doi.org/10.22055/PPR.2015.11394
- Rezaeifar, M., Mehdizadeh, T., Mojaddar Langroodi, A., & Rezaei, F. (2020). Effect of chitosan edible coating enriched with lemon verbena extract and essential oil on the shelf life of vacuum rainbow trout (Oncorhynchus mykiss). Journal of Food Safety, 40(3), 12781. https://doi.org/10.1111/jfs.12781
- Shadman, S., Hosseini, S.E., Langroudi, H.E., & Shabani, S. (2017). Evaluation of the effect of a sunflower oil-based nanoemulsion with Zataria multiflora essential oil on the physicochemical properties of rainbow trout (Oncorhynchus mykiss) fillets during cold storage. LWT-Food Science and Technology, 79, 511-517. https://doi.org/10.1016/j.lwt.2016.01.073
- Shafaghi Rad, M., & Nouri, M. (2023). Inspection of Capparis spinosa essential oils for quality assurance of fish burgers during refrigerated storage. Food Science & Nutrition, 11(11), 7229-7241. https://doi.org/10.1002/fsn3.3648
- Shah Hosseini, S.R., Safari, R., & Javadiyan, S.R. (2021). Evaluation antioxidant effects of Pullulan edible coating with watercress extract (Nasturtiumn officinale) on the chemical corruption of fresh beluga sturgeon fillet during storage in a refrigerator. Iranian Scientific Fisheries Journal, 30(2), 133-146. https://doi.org/10.22092/ISFJ.2021.124553
- Tabarestani, H.S., Maghsoudlou, Y., Motamedzadegan, A., & Mahoonak, A.S. (2010). Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresource Technology, 101(15), 6207-6214. https://doi.org/10.1016/j.biortech.2010.02.071
- Wang, W., Zhang, J., Qi, W., Su, R., He, Z., & Peng, X. (2021). Alizarin and purpurin from Rubia tinctorum suppress insulin fibrillation and reduce the amyloid-induced cytotoxicity. ACS Chemical Neuroscience, 12(12), 2182-2193. https://doi.org/10.1021/acschemneuro.1c00177
- Youssef, A.M., El-Sayed, H.S., Islam, E.N., & El-Sayed, S.M. (2021). Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Advances, 11(37), 22571-22584. https://doi.org/10.1039/D1RA03819B
- Yu, D., Jiang, Q., Xu, Y., & Xia, W. (2017). The shelf life extension of refrigerated grass carp (Ctenopharyngodon idellus) fillets by chitosan coating combined with glycerol monolaurate. International Journal of Biological Macromolecules, 101, 448-454. https://doi.org/10.1016/j.ijbiomac.2017.03.038
- Yu, D., Zhao, W., Dong, J., Zang, J., Regenstein, J.M., Jiang, Q., & Xia, W. (2022). Multifunctional bioactive coatings based on water-soluble chitosan with pomegranate peel extract for fish flesh preservation. Food Chemistry, 374, 131619. https://doi.org/10.1016/j.foodchem.2021.131619
- Zeng, X., He, L., Guo, X., Deng, L., Yang, W., Zhu, Q., & Duan, Z. (2017). Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish. International Journal of Food Microbiology, 242, 141-151. https://doi.org/10.1016/j.ijfoodmicro.2016.11.014
- Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica ) in food products. Trends in Food Science & Technology, 80, 43-50. https://doi.org/10.1016/j.tifs.2018.07.011
ارسال نظر در مورد این مقاله