با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

استفاده از پوشش‌های خوراکی، می‌تواند روشی مؤثر برای افزایش عمر انبارمانی میوه‌ها از جمله سیب باشند. این ترکیبات، پوشش‌های نازکی از مواد قابل خوردن هستند که به‌عنوان محافظ به‌منظور افزایش ماندگاری آن‌ها به کار گرفته می‌شوند و با ایجاد ساختار محافظت کننده در برابر آسیب‌های مکانیکی و تغییر اتمسفر درونی بافت، می‌توانند کیفیت میوه‌ها را افزایش دهند. به همین منظور، در این بررسی اثر محلول‌پاشی قبل از برداشت کیتوسان و اسانس مرزه و پس از برداشت کلرید کلسیم، بر برخی ویژگی‌های میوه سیب در چهار زمان مختلف (صفر، 60، 90 و 120 روز پس از برداشت) در دمای 4 درجه سانتی‌گراد مورد ارزیابی قرار گرفت. نتایج تجزیه واریانس نشان داد که اثر تیمار و زمان انبارمانی بر تمام ویژگی‌های مورد نظر در سطح یک درصد معنی‌دار بود. میوه‌های تیمار شده دارای محتوای فنول و فلاونوئید کل، فعالیت آنتی‌اکسیدانی، ویتامین ث و اسیدهای قابل تیتراسیون بالاتر و شاخص طعم، اسیدیته، مواد جامد محلول، مالون دی‌آلدئید و فعالیت آنزیم پلی‌فنول اکسیداز و کاهش وزن کم‌تر از شاهد بودند. بالاترین میزان محتوای فنول و فلاونوئید کل، فعالیت آنتی‌اکسیدانی، ویتامین ث و اسیدهای قابل تیتراسیون در هر چهار زمان اندازه‌گیری متعلق به تیمارهای کیتوسان + اسانس + کلرید کلسیم و کم‌ترین میزان مربوط به تیمار شاهد بود. همچنین در تیمار شاهد، در مدت زمان انبارمانی میزان مالون دی آلدئید، مواد جامد محلول، شاخص طعم و اسیدیته افزایش یافت. در میوه‌های تیمار شده با کیتوسان + اسانس، کم‌ترین اسیدیته و مواد جامد محلول مشاهده شد و در تیمار کیتوسان به تنهایی، بیش‌ترین اسیدهای قابل تیتراسیون و کم‌ترین شاخص طعم وجود داشت. به‌طور کلی، براساس نتایج به دست آمده مشاهده شد که کاربرد قبل از برداشت کیتوسان و اسانس و پس از برداشت کلرید کلسیم، موجب بهبود صفات کیفی میوه سیب رقم گلدن دلیشز شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Use of Edible Coatings Pre and Post-harvesting on the Quality Characteristics of Golden Delicious Apple (Malus domestica cv. Golden Delicious)

نویسندگان [English]

  • Fateme Eini Tari
  • Abdollah Ehtesham Nia
  • Hasan Mumivand
  • Mohamadreza Raji

Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Introduction
The rapid increase in population has raised concerns about food security in the world. On the other hand, to produce more food, in line with population growth, it is necessary to consider sustainable development goals so that the increase in production does not lead to excessive use of resources and environmental damage. Therefore, one of the effective ways to develop food security in line with sustainable development is to reduce the waste of agricultural products, especially garden products.
Materials and Methods
This study aims to investigate the effect of chitosan and essential oil foliar spraying pre- and calcium chloride immersion post- harvesting on Golden delicious apple fruits grafted on MM 111 (Malling Merton 111) in an 18-year-old apple orchard. A factorial experiment in the form of a completely randomized design and in four replications (each replication containing at least 30 fruits) was carried out  in 2 hectares orchard located in the Abistan region of Khorram Abad city in 2021. The first factor of pre-harvest and post-harvest foliar treatments including control treatments (spraying solution with distilled water), foliar spraying of chitosan (100 mg/l) and essential oil (2500 mg/l), and immersion of harvested fruits with Calcium chloride solution (2 %) in the post-harvest stage, and the second factor is the storage period (in days 0, 60, 90 and 120 days after storage (which according to the high storage life of the apple fruit and performing the pre-test and until the end of life) Fruit storage was achieved.
 Results and Discussion
The results of the analysis of variance showed that the effect of treatments and storage time on all desired characteristics was significant at the 1% level. Treated fruits had higher total phenolic and flavonoid content, antioxidant activity, vitamin C, and titratable acids and lower taste index, acidity, soluble solids, malondialdehyde, PPO activity and weight loss than the control. The highest amount of total phenol and flavonoid content, antioxidant activity, vitamin C, and titratable acids in all four measurement times belonged to chitosan + essential oil + calcium chloride treatment and the lowest amount was related to the control treatment. Also, in the control treatment, the amount of malondialdehyde, soluble solids, taste index and acidity increased during the storage period. In the fruits treated with chitosan + essential oil, the lowest acidity and soluble solids were observed, and in the chitosan treatment alone, higher titratable acids and the lowest taste index were observed. In general, based on the obtained results, it was observed that the application of chitosan and essential oil before harvesting and calcium chloride after harvesting improved the quality characteristics of Golden Delicious apple fruit. Weight loss is mainly caused not only by sweating but also by breathing. By forming a membrane on the surface of fruits, chitosan biopolymer acts as a mechanical and physical barrier to reduce gas exchange, and as a result, fruit maturation and aging are affected. Composite coatings reduce weight loss by maintaining hydration and reducing gas exchange and water vapor emission. Edible coatings can act on the phenylpropanoid pathway and increase the level of phenolic compounds in plants, and the phenylpropanoid pathway includes the synthesis of various plant secondary metabolites such as lignin, flavonoids, phenolic volatiles, and tannins. The semi-permeable barrier of the chitosan coating limited the rate of respiration, reduced water loss, and delayed ripening and aging, which resulted in higher total phenolic content during storage. Composite coatings delay the oxidation of phenolic compounds, eliminate metals and free radicals and create a quasi-bonded structure that prevents the passage of infiltrating materials such as O2, CO2, and water vapor.
Conclusion
In this research, applying a combination of chitosan + essential oil + calcium chloride as a coating on apple led to increase the vitamin C, antioxidant activity, total phenol and flavonoid content, and reduction the weight loss. In addition, the application of this treatment led to the improvement of other characteristics such as the reduction of malondialdehyde, acidity, soluble solids, taste index, and increase of titratable acids. Therefore, it can be stated that in addition to the fact that these compounds alone improved the quality of apple fruit, their combined use is also recommended as a biodegradable and natural coating to increase the storage life of Golden Delicious apple fruit.

کلیدواژه‌ها [English]

  • Edible coatings
  • Malondialdehyde
  • Titratable acids
  • Total phenol content

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abhirami, P., Modupalli, N., & Natarajan, V. (2020). Novel postharvest intervention using rice bran wax edible coating for shelf‐life enhancement of Solanum lycopersicum Journal of Food Processing and Preservation, 44(12), e14989. https://doi.org/10.1111/ jfpp.14989
  2. Ackah, S., Bi, Y., Xue, S., Yakubu, S., Han, Y., Zong, Y., Atuna, R.A., & Prusky, D. (2022). Post-harvest chitosan treatment suppresses oxidative stress by regulating reactive oxygen species metabolism in wounded apples. Front Plant Science, 13, 959762. https://doi.org/10.3389/fpls.2022.959762
  3. Adiletta, G., Di Matteo, M., & Petriccione, M. (2021). Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. International Journal of Molecular Sciences22(5), 2633.‏  https://doi.org/10.3390/ijms22052633
  4. Adiletta, G., Pasquariello, M.S., Zampella, L., Mastrobuoni, F., Scortichini, M., & Petriccione, M. (2018). Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy8(4), 54.‏  https://doi.org/10.3390/agronomy8040054
  5. Agricultural statistics. (2021). report of horticultural and greenhouse products. publications of the deputy statistics of information and communication technology center, 3, 328 p. (In Persian)
  6. Ahmadvand, H., Tavafic, M., & Khalatbary, A.R. (2012). Hepatoprotective and hypolipidemic effects of Satureja khuzestanica essential oil in alloxan-induced type 1 diabetic rats. Iranian Journal of Pharmaceutical Research, 11, 1219-1226. PMID: 24250556
  7. Barzaman, M., Mirdehgan, S.H., & Nazoori, F. (2018). Combined application of polyamines and chitosan on bioactive compound and browning of fresh pistachio. Nutrition Science and Food Technology, 15(81), 357-374. (In Persian). http://journal-irshs.ir/article-1-189-en.html
  8. Ahn-Jarvis, J.H., Parihar, A., & Doseff, A.I. (2019). Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants8(7), 202.‏‏ https://doi.org/10.3390/antiox8070202
  9. Alizadeh, A. (2013). Iranian endemic medicinal plants. Estahban Branch, Islamic Azad University. Lecture notes.
  10. Asghari, M.R., Jami, R., & Farokhzad, A.R. (2017). Postharvest application of calcium carbonate nanoparticles on enzyme activity and some attributes quality in fresh cut apples varieties Golden Delicious. Iranian Food Science and Technology Research Journal, 13(1), 155-166. (In Persian with English abstract). https://doi.org/10.22067/ifstrj.v1395i0.45104
  11. Ashtiani, S.H.M., Rafiee, M., Morad, M.M., Khojastehpour, M., Khani, M.R., Rohani, A., Shokri, B., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
  12. Beiparysa, A., Ebson Topno, S., Joseph, A.V., Bahadur, V., Kerketta, A., & Kesharwani, L. (2023). Effect of calcium chloride (CaCl2) and carbon dioxide (CO2) on post harvest quality of apple fruit (Malus domestica) cv. Gala. International Journal of Plant & Soil Science, 35(18), 199-207. https://doi.org/10.9734/ijpss/2023/v35i183283
  13. Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology28(1), 25-30.‏ https://doi.org/10.1016/S0023-6438(95)80008-5
  14. Chauhan, C., Dhir, A., Akram, M.U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 126438. https://doi.org/10.1016/j.jclepro.2021.126438
  15. Chen, C., Hu, W., He, Y., Jiang, A., & Zhang, R. (2016). Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology111, 126-131.‏ https://doi.org/10.1016/j.postharvbio.2015.08.005
  16. Cosme Silva, G.M., Silva, W.B., Medeiros, D.B., Salvador, A.R., Cordeiro, M.H.M., da Silva, N.M., Santana, D.B., & Mizobutsi, G.P. (2017). The chitosan affects severely the carbon metabolism in mango (Mangifera indica cv. Palmer) fruit during storage. Food Chemistry, 237, 372-378. https://doi.org/10.1016/j.foodchem.2017.05.123
  17. D Abrosca, B., Pacifico, S., Cefarelli, G., Mastellone, C., & Fiorentino, A. (2007). Limoncella apple, an Italian apple cultivar: phenolic and flavonoid contents and antioxidant activity. Journal of Food Chemistry, 104, 1333-1337. https://doi.org/10.1016/j.foodchem.2007.01.073
  18. Dhakad, A., Sonkar, P., Bepari, A., & Kumar, U. (2020). Effect of pre-harvest application of plant growth regulators and calcium salts on biochemical and shelf life of acid lime (Citrus aurantifolia Swingle). Journal of Pharmacognosy and Phytochemistry9(4), 1983-1985.‏phytojournal.com
  19. Drogoudi, P.D., Michailidis, Z., & Pantelidis, G. (2008). Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Scientia Horticalturae, 115, 149-153. https://doi.org/10.1016/j.scienta.2007.08.010
  20. Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2021). Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera cv. ‘Yaghouti’) during postharvest period. Food Chemistry, 347, 129012. https://doi.org/10.1016/j.foodchem.2021.129012
  21. Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2022). Putrescine with Aloe vera gel coating improves bioactive compounds and quality of table grape under cold storage. Journal of of Food Science and Technology,59(10), 4085-4096. https://doi.org/1007/s13197-022-05461-w
  22. Ehtesham Nia, A.E., Taghipour, S., Tatari, A., & Ghasemi Arshad, Z. (2023). Effects of preharvest chitosan-Myrtus communis essential oil composite and postharvest nanocellulose on quality of strawberry. International Journal of Biological Macromolecules, 253, https://doi.org/10.1016/j.ijbiomac.2023.126733
  23. FAO. (2021). http://www.fao.org/fruitsvegetables-2021- 11/02/2022
  24. Fenech, M., Amaya, I., Valpuesta, V., & Botella, M.A. (2019). Vitamin C content in fruits: Biosynthesis and regulation. Frontiers in Plant Science9, 2006.‏ https://doi.org/10.3389/fpls.2018.02006
  25. Forsline, P.L., & Aldwinckle, H.S. (2003). Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. In XI Eucarpia Symposium on Fruit Breeding and Genetics, 663, 529-534.‏ https://doi.org/10.17660/ActaHortic.2004.663.92
  26. Gao, H., Zhang, Z.K., Chai, H.K., Cheng, N., Yang, Y., Wang, D.N., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology118, 103-110.‏ https://doi.org/10.1016/j.postharvbio.2016.03.006
  27. Gao, S.P., Hu, K.D., Hu, L.Y., Li, Y.H., Han, Y., Wang, H. L., & Zhang, H. (2013). Hydrogen sulfide delays postharvest senescence and plays an antioxidative role in fresh-cut kiwifruit. HortScience48(11), 1385-1392.‏ https://doi.org/10.21273/HORTSCI.48.11.1385
  28. Ghasemi Arshad, Z., Ehtsham Nia, A., Hizbavi, A., Momiwand, H., & Soleimani Aghdam, M. (2023). Pre-harvest application of chitosan with carvacrol on the biochemical, qualitative and shelf-life characteristics of strawberries. Iranian Journal of Food Science and Industry Research, 19(5), 617-633. (In Persian with English abstract). https://doi.org/10.22067/ifstrj.2023.77806.1192
  29. Gol, N.B., Vyas, P.B., & Ramana Rao, T.V. (2015). Evaluation of polysaccharide-based edible coatings for their ability to preserve the postharvest quality of Indian blackberry (Syzygium cumini). International Journal of Fruit Science15(2), 198-222.‏ https://doi.org/10.1080/15538362.2015.1017425
  30. Harnkarnsujarit, N., Wongphan, P., Chatkitanan, T., Laorenza, Y., & Srisa, A. (2021). Bioplastic for sustainable food packaging. In Sustainable food processing and engineering challenges(pp. 203-277). Academic Press.‏ https://doi.org/10.1016/B978-0-12-822714-5.00007-3
  31. He, Y., Bose, S.K., Wang, W., Jia, X., Lu, H., & Yin, H. (2021). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International Journal of Molecular Science19(8), 2194.  https://doi.org/10.3390/ijms19082194
  32. Hong, K., Gong, D., Zhang, L., Hu, H., Jia, Z., Gu, H., & Song, K. (2016). Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Gene576(1), 275-283.‏ https://doi.org/10.1016/j.gene.2015.10.041
  33. Huan, C., Han, S., Jiang, L., An, X., Yu, M., Xu, Y., & Yu, Z. (2017). Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biology and Technology126, 1-14.‏ https://doi.org/10.1016/j.postharvbio.2016.11.018
  34. Hussain, P.R., Rather, S.A., Suradkar, P.P., & Ayob, O. (2019). Gamma irradiation treatment of quince fruit (Cydonia oblonga Mill): effect on post-harvest retention of storage quality and inhibition of fungal decay. Journal of Radiation Research and Applied Sciences, 12(1), 118-131.‏ https://doi.org/10.1080/16878507.2019.1618588
  35. Iraqi, H., Rastgar, S., Tajuddin, B., Nikkhah M., & Askari Sarcheshmeh, M. (2021). Preservation of antioxidant activity and reduction of microbial load of Aryl Pomegranate cultivar Meles Saveh using a film to preserve antioxidant activity containing chitosan and carvacrol. Journal of Nutrition Science and Food Industry of Iran, 16(2), 130-121. (In Persian). https://doi.org/10.1080/16878507.2019.1618588
  36. Jain, V., Chawla, S., Choudhary, P., & Jain, S. (2019). Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (Ziziphus mauritiana) fruits during storage. Journal of Food Science and Technology, 56, 4535–4542. https://doi.org/10.1007/s13197-019-03934-z
  37. Jan, I., Rab, A., & Sajid, M. (2012). Storage performance of apple cultivars harvested at different stages of maturity. Journal of Anim. Plant Science, 22, 438-447. https://doi.org/10.1080/16878507.2019.1618588
  38. Jiang, Y.M., & Fu, J.R. (1998). Inhibition of polyphenol oxidase and the browning control of litchi fruit by glutathione and citric acid. Food Chemistry, 62, 49–52. https://doi.org/10.1016/S0308 -8146(97)00144-1
  39. Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. Lwt73, 28-36.‏ https://doi.org/10.1016/j.lwt.2016.05.038
  40. Kerch, G. (2015). Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends in Food Science & Technology46(2), 159-166.‏ https://doi.org/10.1016/j.tifs.2015.10.010
  41. Khaliq, G., Abbas, H.T., Ali, I., & Waseem, M. (2019). Aloe vera gel enriched with garlic essential oil effectively controls anthracnose disease and maintains postharvest quality of banana fruit during storage. Horticulture, Environment and Biotechnology, 60(5), 1-11. https://doi.org/10.1007/s13580-019-00159-z
  42. Khan, A.S., Singh, Z., Abbasi, N.A., & Swinny, E.E. (2008). Pre- or post-harvest application of putrescine and low temperature storage affect fruit ripening and quality of Angelino plum. Science of food and Agriculture, 88, 1686-1695. https://doi.org/10.1002/jsfa.3265
  43. Li, D., Zhang, X., Qu, H., Li, L., Mao, B., Xu, Y., & Luo, Z. (2020). Delaying the biosynthesis of aromatic secondary metabolites in postharvest strawberry fruit exposed to elevated CO2Food Chemistry306, 125611.‏ https://doi.org/10.1016/j.foodchem.2019.125611
  44. Lister, C.E., Lancaster, J.E., & Sutton, K.H. (1994). Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. Journal of Science of Food and Agriculture, 64, 155-161. https://doi.org/10.1002/jsfa.2740640204
  45. Liu, Z., Du, M., Liu, H., Zhang, K., Xu, X., Liu, K., & Liu, Q. (2021). Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Progress in Organic Coatings151, 106103.‏ https://doi.org/10.1016/j.porgcoat.2020.106103
  46. Lu, H., Li, L., Limwachiranon, J., Xie, J., & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae213, 104-109.‏ https://doi.org/10.1016/j.scienta.2016.10.017
  47. Mahajan, P.V., Caleb, O.J., Singh, Z., Watkins, C.B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences372(2017), 20130309.‏ https://doi.org/10.1098/rsta.2013.0309
  48. Michailidis, M., Karagiannis, E., Tanou, G., Samiotaki, M., Tsiolas, G., Sarrou, E., Stamatakis, G., Ganopoulos, I., Martens, S., Argiriou, A., & Molassiotis, A. (2020). Novel insights into the calcium action in cherry fruit development revealed by highthroughput mapping. Plant Molecular Biology, 104, 597–614. https://doi.org/10.1007/s11103-020-01063-2
  49. Mighani, H., Boroumand, N., & Moghbeli, A. (2016). The effect of chitosan and calcium chloride on post-harvest quality and antioxidant compounds of strawberry fruit. Food Science and Industry, 76-15. (In Persian)
  50. Miraei Ashtiani, S.H., Rafiee, M., Mohebi Morad, M., & Martynenko, A. (2022). Cold plasma pretreatment improves the quality and nutritional value of ultrasound-assisted convective drying: The case of goldenberry. Drying Technology, 1-19. https://doi.org/10.1080/07373937.2022.2050255
  51. Misir, J., Brishti, F.H., & Hoque, M.M. (2014). Aloe vera gel as a novel edible coating for fresh fruits: A Review. American Journal of Food Science and Technology, 2(3), 93-97. https://doi.org/10.12691/ajfst-2-3-3
  52. Modesti, M., Zampella, L., & Petriccione, M. (2019). Chitosan mono-and bilayer edible coatings for preserving postharvest quality of fresh fruit. Polymers for Agri-Food Applications, 465-486.‏ https://doi.org/10.1007/978-3-030-1946-1-23
  53. Moussa, H., El Omari, B., Chefchaou, H., Tanghort, M., Mzabi, A., Chami, N., & Remmal, A. (2021). Action of thymol, carvacrol and eugenol on Penicillium and Geotrichum isolates resistant to commercial fungicides and causing postharvest citrus decay. Canadian Journal of Plant Pathology43(1), 26-34.‏ https://doi.org/10.1080/07060661.2020.1767692
  54. Nair, M.S., Tomar, M., Punia, S., Kukula-Koch, W., & Kumar, M. (2020). Enhancing the functionality of chitosan-and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 164, 304-320.‏ https://doi.org/10.1016/j.ijbiomac.2020.07.083
  55. Palmer, J.W. (2006). Apples and kiwifruit, can we learn from each other?. In VI International Symposium on Kiwifruit, 753, 359-368.‏ https://doi.org/10.17660/ActaHortic.2007.753.45
  56. Pavun, L., MarKovic, S., Stankov, M., Dikanovic, D., &Durdevic, P. (2018). Determination of flavonoids and total polyphenol contents in commercial apple juices. Czech Journal of Food Sciences, 36(3), 233-238. https://doi.org/10.17221/211/2017-CJFS
  57. Pessoa, C.C., Marques, A.C., Coelho, A.R.F., Daccak, D., Luís, I.C., Ramalho, J.C., Campos, P.S., Pais, I.P., Semedo, J.N., & Silva, M.M. (2022). Assessment of calcium content in pear fruits under storage after CaCl2 applications during pre- and post-harvest phases. Biological Life Science Forum, 16, 9. https://doi.org/10.3390/IECHo2022-12481
  58. Petriccione, M., De Sanctis, F., Pasquariello, M.S., Mastrobuoni, F., Rega, P., Scortichini, M., & Mencarelli, F. (2015). The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food and Bioprocess Technology8, 394-408.‏ https://doi.org/10.1007/s11947-014-1411-x
  59. Pizato, S., Sebastian Vega-Herrera, S., Costa Chevalier, R., Arevalo Pinedo, R., & Renzo Cortez-Vega, W. (2022). Impact of chitosan coatings enriched with clove essential oil on quality of minimally processed strawberries. Food/Feed Science and Technology Journal, 65, e22210278. https://doi.org/10.1590/1678-4324-2022210278.
  60. Rahmati Junidabad, M., Alizadeh Behbahani, B., & Naushad, M. (2022). Chemical characteristics and investigation of inhibitory and lethal activity of the growth of fungi that cause spoilage and mold after harvesting apple fruit using bitter myrrh essential oil. Iranian Journal of Food Science and Industry, 31(19), 231-223. (In Persian with English abstract). https://doi.org/10.22034/FSCT.19.131.223
  61. Rastegar, S., & Atrash, S. (2021). Effect of alginate coating incorporated with Spirulina, Aloe vera and guar gum on physicochemical, respiration rate and color changes of mango fruits during cold storage. Journal of Food Measurement and Characterization15, 265-275. https://doi.org/10.1007/s11694-020-00635-6
  62. Rezvanifar, M.A., Farshid, A.A., Sadrkhanlou, R.A., Ahmadi, A., Rezvanfar, M.A., & Salehnia, A., Abdollahi, M. (2010). Benefit of Satureja khuzestanica in subchronically rat model of cyclophosphamideinduced hemorrhagic cystitis. Exp Molecular Pathology, 62, 323–330. https://doi.org/10.1016/j.etp.2009.05.005
  63. Rocculi, P., Romani, S., & Dalla Rosa, M. (2004). Evaluation of physico-chemical parameters of minimally processed apples packed in non-conventional modified atmosphere. Food Research International, 37(4), 329-335. https://doi.org/10.1016/j.foodres.2004.01.006
  64. Rokayya, S., Khojah, E., Elhakem, A., Benajiba, N., Chavali, M., Vivek, K., & Helal, M. (2021). Investigating the nano-films effect on physical, mechanical properties, chemical changes, and microbial load contamination of white button mushrooms during storage. Coatings, 11(1), 44. https://doi.org/10.3390/coatings11010044
  65. Sadeghi-Nejad, B., Saki, J., Khademvatan, S., & Nanaei, S. (2011). In vitro antileishmanial activity of the medicinal plant Satureja khuzestanica Journal Medicinal Plants Research, 5, 5912-5915. http://www.academicjournals.org/JMPR ISSN 1996-0875
  66. Saei-Dehkordi, S., Fallah, A.A., HeidariNasirabadi, M., & Moradi, M. (2012). Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food-related microorganisms. Internatinal Journal Food Scieance Technology, 47, 1579–1585. https://doi.org/10.1111/j.1365-2621.2012.03006.x
  67. Salvia-Trujillo, L., Rojas-Grau, M.A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology105, 8-16.‏ https://doi.org/10.1016/j.postharvbio.2015.03.009
  68. Sharma, R., Kamble, S.S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers & Operations Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926
  69. Shen, Y., & Yang, H. (2017). Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Scientia Horticulturae224, 367-373.‏ https://doi.org/10.1016/j.scienta.2017.06.046
  70. Shokouhian, A.A., Einizadeh, S., & Dashti, M. (2024). The effect of edible coatings on the quality and storage life of Cherry cv. Lambert. Iranian Food Science and Technology Research Journal, 20(2), 237-247. (In Persian with English abstract). https://doi.org/10.22067/ifstrj.2023.81146.1236
  71. Shokri, M., Rahmati-Joneidabad, M., Heidari, M., Rasouli, M., & Zare, A. (2023). The effect of chitosan edible coating on physicochemical properties and enzymatic activity of grape fruit cultivar Fakhri in cold storage conditions. Iranian Food Science and Technology Research Journal 19(1), 95-106. (In Persian with English abstract). http://doi.org/10.22067/ifstrj.2022.75449.1150
  72. Sogvar, O.B., Saba, M.K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology114, 29-35.‏ https://doi.org/10.1016/j.postharvbio.2015.11.019
  73. Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology119, 41-48.‏ https://doi.org/10.1016/j.postharvbio.2016.04.015
  74. Steelheart, C., Alegre, M.L., Bahima, J.V., Senn, M.E., Simontacchi, M., Bartoli, C.G., & Grozeff, G.E.G. (2019). Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum) fruit postharvest life. Scientia Horticulturae255, 193-201.‏ https://doi.org/10.1016/j.scienta.2019.04.035
  75. Sun, X., Baldwin, E., & Bai, J. (2019). Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables–A review. Food Control95, 18-26.‏ https://doi.org/10.1016/j.foodcont.2018.07.044
  76. Szlachta, M., Neitola, R., Peraniemi, S., & Vepsalainen, J. (2020). Effective separation of uranium from mine process effluents using chitosan as a recyclable natural adsorbent. Purif. Technology, 253, 117493. https://doi.org/10.1016/j.seppur.2020.117493
  77. Teuber, R., & Jensen, J.D. (2020). Definitions, measurement, and drivers of food loss and waste. In Food Industry Wastes (pp. 3-18). Academic Press. https://doi.org/10.1016/B978-0-12-817121-9.00001-2
  78. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology41(2), 164-171.‏ https://doi.org/10.1016/j.postharvbio.2006.03.016
  79. Veberic, R. (2016). The impact of production technology on plant phenolics. Horticulturae2(3), 8.‏‏ https://doi.org/10.3390/horticulturae2030008
  80. Vieira, J.M., Flores-Lopez, M.L., de Rodríguez, D.J., Sousa, M.C., Vicente, A.A., & Martins, J.T. (2016). Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology116, 88-97.‏ https://doi.org/10.1016/j.postharvbio.2016.01.011
  81. Vogt, S., Kelkenberg, M., Noll, T., Steinhoff, B., Schonherr, H., Merzendorfer, H., & Noll, G. (2018). Rapid determination of binding parameters of chitin binding domains using chitin-coated quartz crystal microbalance sensor chips. Analyst143(21), 5255-5263. https://doi.org/10.1039/C8AN01453A
  82. Wang, F., Zhang, X., Yang, Q., & Zhao, Q. (2019). Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chemistry301, 125311.‏ https://doi.org/10.1016/j.foodchem.2019.125311
  83. Wu, X., Yan, L., Hu, X., & Lian, M. (2023). Effect of foliar calcium fertilization on fruit quality, cell wall enzyme activity and expression of key genes in Chinese cherry. International Journal of Fruit Science, 23(1), 200–216. https://doi.org/10.1080/15538362.2023.2265656
  84. Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., & Zheng, Y.I. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae263, 109135.‏ https://doi.org/10.1016/j.scienta.2019.109135
  85. Xing, Y., Yang, S., Xu, Q., Xu, L., Zhu, D., Li, X., & Bi, X. (2021). Effect of chitosan/nano-TiO2 composite coating on the postharvest quality of blueberry fruit. Coatings11(5), 512.‏ https://doi.org/10.3390/coatings11050512
  86. Yang, C., Chen, T., Shen, B., Sun, S., Song, H., Chen, D., & Xi, W. (2019). Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica) fruit. Food Science & Nutrition, 7(11), 3635-3643.‏ https://doi.org/10.1002/fsn3.1219
  87. Zarrin, M., Amirrajab, N., & Sadeghi-Nejad, B. (2010). In vitro antifungal activity of Satureja khuzestanica. Pakistan Journal of Medical Sciences, 26, 880-882. URL: http://jjm.ajums.ac.ir.
  88. Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021). Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends in Food Science & Technology113, 355-365.‏ https://doi.org/10.1016/j.tifs.2021.05.009
  89. Zhang, W., Shu, C., Chen, Q., Cao, J., & Jiang, W. (2019). The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to Penicillium expansion of apple fruit. Food Chemistry, 299, 1-8. https://doi.org/10.1016/j.foodchem.2019.125109
  90. Zhang, X., Qu, H., Li, L., Mao, B., Xu, Y., & Luo, Z. (2020). Delaying the biosynthesis of aromatic secondary metabolites in postharvest strawberry fruit exposed to elevated CO2Food Chemistry, 306, 125611.‏ https://doi.org/10.1016/j.foodchem.2019.125611
  91. Zhao, L., Wang, Y., Qiu, D., & Liao, X. (2014). Effect of ultrafiltration combined with high-pressure processing on safety and quality features of fresh apple juice. Food and Bioprocess Technology7, 3246-3258.‏ http://doi.org/10.1007/s11947-014-1307-9
  92. Zheng, X., & Tian, S. (2006). Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96(4), 519-523. https://doi.org/10.1016/j. foodchem.2005.02.049
  93. Zhi, H.H., Liu, Q.Q., Dong, Y., Liu, M.P., & Zong, W. (2017). Effect of calcium dissolved in slightly acidic electrolyzed water on antioxidant system, calcium distribution, and cell wall metabolism of peach in relation to fruit browning. The Journal of Horticultural Science and Biotechnology, 92(6), 621–629. https://doi.org/10.1080/14620316.2017.1309994
CAPTCHA Image