نوع مقاله : مقاله پژوهشی
نویسندگان
گروه بهداشت و صنایع غذایی، دانشکده پیرادامپزشکی، دانشگاه ایلام، ایلام، ایران
چکیده
فیلمهای خوراکی بهعنوان مواد جدید تجزیهپذیر در بستهبندی مواد غذایی، نقش مهمی در رفع نگرانیهای مصرفکنندگان در مورد آلودگی محیطزیست و آلودگی مواد غذایی دارند. با توجه به تمایل استفاده زیاد فیلمهای بستهبندی زیستتخریبپذیر و افزایش قابلیت ضد میکروبی آنها در این مطالعه، فیلم فعال بستهبندی زیستتخریبپذیر بر پایه ژلاتین و کربوکسی متیل سلولز در غلظتهای مختلف (غلظتهای0، 0.5، 0.75، 1.5 و 3.25 درصد) حاوی عصاره کندل کوهی تهیه شدند. ویژگیهای فیزیکوشیمیایی فیلمهای فعال تولیدی مانند (حلالیت، نفوذپذیری به بخار، ضخامت و کدورت)، آزمایشات مکانیکی (ازدیاد طول تا نقطه شکست، مقاومت به کشش و مدول یانگ)، فعالیت آنتیاکسیدانی و فعالیت ضدمیکروبی در نظر گرفته شد. اثر غلظتهای (0، 0.5، 0.75، 1.5 و 3.25 درصد) عصاره کندل برای تولید فیلمهای خوراکی روی ویژگیهای فیزیکوشیمیایی، مکانیکی، آنتیاکسیدانی و ضدمیکروبی با طرح آنالیز واریانس یکطرفه (ANOVA) و مقایسه میانگین دادهها براساس آزمون چند دامنهای دانکن با استفاده از نرمافزار SPSS26 در سطح احتمال (0.05) انجام گرفت. بالاترین میزان استحکام کششی و ازدیاد طول در نقطه شکست و مدول یانگ در تیمار 0.5 درصد بود. در تمامی غلظتها حلالیت و نفوذپذیری معنیدار بود (0.05>p). و کمترین میزان حلالیت و ضخامت در تیمار شاهد مشاهده شد. بیشترین نفوذپذیری و کدورت در تیمار)% 1.5 (عصاره کندل مشاهده شد. در تمامی تیمارهای فیلم خوراکی خاصیت آنتیاکسیدانی با استفاده از رادیکالهای DPPH معنیدار بود (0.05>p). نتایج ارزیابی فعالیت ضدمیکروبی فیلم با کمک روش دیسکهای انتشاری نشان داد که بیشترین قطر هاله بازدارندگی در غلظت (% 3.25) مربوط به Escherichia coli متوسط قطر هاله mm 5.33 بود. متوسط قطر هاله برای Pseudomonas aeruginosa Staphylococcus aureus, بهترتیب mm 4 و mm 3.99 گزارش شد. نتایج کلی نشان داد که افزودن عصاره کندل در غلظت (% 1.5) باعث تولید فیلمهایی گردید که علاوه بر مهار رشد و تکثیر باکتریها دارای خواص مکانیکی مطلوب موجب بهبود خصوصیات آنتیاکسیدانی فیلم ترکیبی شد و همچنین میتواند بهعنوان یک پوشش مناسب برای محافظت مواد غذایی استفاده گردند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigating the Physicochemical and Antimicrobial Properties of Gelatin-carboxymethyl Cellulose Edible Film Containing Dorema aucheri Extract
نویسندگان [English]
- Elham Ahmadi
- Sara Panahi
- Amirhossein Karimzadeh
- Hamed Hassanzadeh
- Mohammadyar Hosseini
Department of Food Science and Hygiene, Faculty of Veterinary Science, Ilam University, Ilam, Iran
چکیده [English]
Introduction
In recent years, with increasing concerns about food safety and environmental issues related to waste generated by non-degradable plastic packaging, study on novel biodegradable packaging materials has attracted the attention of researchers. Active packaging based on biopolymers, which offers a sustainable and environmentally friendly way to improve food shelf life, considered one of such packaging technologies. Edible coatings and films, are a thin layer of edible compounds and biopolymers applied on the surface of foodproducts that play important role to control physicochemical, microbial and physiological changes in food. Gelatin is obtained from partial degradation of collagen. Due to its availability, relatively cheap price, biodegradability and good properties such as its excellent ability to form a film and reduce the transfer of oxygen, oil and moisture, it is highly regarded as an edible film and has antimicrobial and antioxidant activity. In general, the gelatin film showed high water absorption due to the presence of several hydrophilic groups, which may weaken the mechanical properties and water vapor transport of the film. For this reason, the combination of gelatin with other biopolymers such as chitosan, starch and gum is a suitable method to eliminate the drawbacks of gelatin-based films.
Materials and Methods
To prepare the composite film of the four formulations studied in this research, gelatin powder (3% by weight/volume of water) and glycerol (30% by weight/volume of gelatin powder) were added to deionized water and magnetically stirred for 10 minutes at 2400 RPM. To prepare an aqueous suspension of carboxymethyl cellulose, powder (CMC 2% by weight/volume of water) and glycerol (30% by weight/weight of carboxymethyl cellulose powder) were mixed with deionized water. This suspension was heated to boiling temperature and kept at this temperature for 15 minutes and then kept for 30 minutes at 90°C water bath and stirred. The G/CMC coating was also prepared by dissolving 40 grams of gelatin, 10 grams of carboxymethyl cellulose and glycerol (30% by weight/weight of polymer materials) in one liter of water. The mixture was stirred for 1 hour at 60 degrees Celsius. The mixture was then dried at 25-35 degrees Celsius. Different concentrations of the extract (0, 0.5, 0.75, 1.5 and 3.25%) were added to the mixture and stirred for 2 minutes. In the next step, the mixture was added to a plastic Petri dish with a diameter of 15 cm and placed under a vacuum hood for 1 hour. Then it was transferred to a fan oven and kept for 20 hours. In the final stage, the dried films were placed in a desiccator at room temperature for testing. The effect of different concentrations of Dorema aucheri extract for the production of edible films on the physicochemical, mechanical, antioxidant and antimicrobial properties was analyzed with one-way analysis of variance (ANOVA) and comparing the average data was performed based on Duncan's multi-range test using SPSS26 software at probability level of 0.05.
Results and Discussion
The highest tensile strength and elongation at break point and Young's modulus in the treatment was 1.5%. In all concentrations, solubility and permeability were significant (p<0.05). The lowest solubility was observed in the control. The highest permeability and turbidity were observed in the treatment of 1.5% Dorema aucheri extract. In all edible film treatments, the antioxidant property using DPPH radicals was significant (p<0.05). The results of the evaluation of the antimicrobial activity of the film with the help of diffusion discs showed that the maximum diameter of the inhibition halo in the concentration of 3.25% was related to Escherichia coli with an average halo diameter of 5.33 mm. Average halo diameter for Pseudomonas aeruginosaand Staphylococcus aureus was reported as 4 mm and 3.99 mm, respectively. The overall results showed that the addition of Dorema aucheri extract at a concentration of 1.5% produced films that, in addition to inhibiting the growth and proliferation of bacteria, have strength and can be used for perishable food.
کلیدواژهها [English]
- Carboxymethyl cellulose
- Dorema aucheri
- Film
- Gelatin
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Abdollahi, S., & Raoufi, Z. (2022). Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing. Journal of Drug Delivery Science and Technology, 72, 1-8. https://doi.org/10.1016/j.jddst.2022.103423
- Ahangarpour, A., Teymuri Zamaneh, H., Jabari, A., Nia, H.M., & Heidari, H. (2014). Antidiabetic and hypolipidemic effects of Dorema aucheri hydroalcoholic leave extract in streptozotocinnicotinamide induced type 2 diabetes in male rats. Iran Journal Basic Medical Science, 17, 808-14. https://doi.org/10.22038/ijbms.2014.3458
- Ahmed, A., Youssef, MS., EL-Sayedb, K., Hoda, Z., Sayed, A., & Dufresnec, A. (2016). Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydrate Polymers, 151, 9-19. https://doi.org/10.1016/j.carbpol.2016.05.023
- Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, TW. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189-199. https://doi.org/10.1016/j.foodhyd.2011.12.003
- Alizadeh Sani, M., Tavassoli, M., Salim, S.A., Azizi-lalabadi, M., & McClements, DJ. (2022). Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin loaded gelatin/κ-carrageenan films. Food Hydrocolloids, 124, https://doi.org/10.1016/j.foodhyd.2021.107324
- Baldwin, E.A. (2007). Surface treatments and edible coatings in food preservation. In: Rahmanm M.S. (ed.), Handbook of Food Preservation, Boca Raton. CRC Press, Florida- USA. Baldwin, E. & Wood, B., 2006, Use of edible coating to preserve pecans. https://doi.org/10.1201/9781420017373.ch21
- Begum, T., Mahmud, J., Naimul Islam, M.D., & Khan, R.A. (2018). Essential oils and biodegradable packaging materials: Application on food preservations. Scientific Review, 5(1), 1–7. https://doi.org/10.32861/sr.51.1.7
- Bertan, L., Tanada-Palmu, P., Siani, A., & Grosso, C. (2005). Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloids, 19(1), 73-82. https://doi.org/10.1016/j.foodhyd.2004.04.017
- Biswal, D.R., & Singh, R.P. (2004). Characterization of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers, 57(4), 379–387. https://doi.org/10.1016/j.carbp ol.2004.04.020
- Brindle, L.P., & Krochta, J.M. (2008). Physical properties of whey protein hydroxy propylmethylcellulose blend edible films. Journal of Food Science, 73(9). https://doi.org/10.1111/j.1750-3841.2008.00941.x
- Cao, N., Fu, Y., & He, J. (2007). Mechanical properties of gelatin films cross linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21(4), 575–584. https://doi.org/10.1016/j.foodh yd.2006.07.001
- Dehnad, D. (2015). Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate Polymers, 118, 24-29. https://doi.org/10.1016/j.carbpol.2014.11.015
- Dicka, , Costaa, T.M.H., Gomaa, A., Subirade M, Riosa, A.D.O., & Flôresa, S.H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. https://doi.org/10.1016/j.carbpol.2015.05.040
- Dou,, Li, B., Zhang, K., Chu, X., & Hou, H. (2018). Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. International Journal of Biological Macromolecules, 118(B), 1377-1383. https://doi.org/10.1016/j.ijbiomac.2018.06.121
- Eftekhari, Oskou F., Tofighi, Z., Motevaseli, E., & Jafari Nodooshan, Sh. (2019). MRAlert for Consumption of Dorema aucheri: an Edible. Medicinal Plant of Iran, 75-84.
- Ekrami, M., Emam-Djomeh, Z., Ghoreishy, S.A., Najari, Z., & Shakoury, N. (2019). Characterization of a high-performance edible film based on Salep mucilage functionalized with pennyroyal (Mentha pulegium). International Journal Biology Macrom, 133, 529-537. https://doi.org/10.1016/j.ijbiomac.2019.04.136
- Elansary, H.O., Szopa, A., Klimek-Szczykutowicz, M., Ekiert, H., Barakat, AA., & Al-Mana, F.A. (2020) Antiproliferative, antimicrobial, and antifungal activities of polyphenol extracts from Ferocactus Processes, 8(2), 138. https://doi.org/10.3390/pr8020138
- Fernando, A.L. (2019). Activity of chitosan montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids 89, 241–252. https://doi.org/10.1016/j.foodhyd.2018.10.049
- Govindappa, M., Channabasava, S.Ts, R., Mk, J., Ks, P., & Raghavendra, V.B. (2011). Antioxidant activity and phytochemical screening of Tecoma stans (L.) Juss. ex Kunth. Journal of Phytology, 3(3), 68-76. https://doi.org/10.5897/AJMR12.2274
- Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., & Ozkan, H. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia ssp. longifolia. Food Chemistry, 103(4), 1449-56. https://doi.org/10.1016/j.foodchem.2006.10.061
- Hosseini, M., Rahimi, Z., & Saifi, T. (2023). Production of edible film based on gelatin containing thyme essential oil: investigation of its physicochemical, mechanical, antioxidant and microbial properties. Iranian Food Science and Technology, 20(135), 129-139. https://doi.org/10.22034/FSCT.19.135.129
- Jahit, I.S., Nazmi, N.N., M., Isa, M.I.N., & Sarbon, N.M. (2016). Preparation and physical properties of gelatin/CMC/chitosan composite films as affected by drying temperature. International Food Research Journal, 23(3), 1068–1074. https://doi.org/10.26656/fr.2017.4(1).243
- Kchaou, H., Jridi, M., Benbettaieb, N., Debeaufort, F., & Nasri, M. (2020). Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packaging and Shelf Life, 24, 100477. https://doi.org/10.1016/j.fpsl.2020.100477
- Khanzadi,, Jafari, S.M., Mirzaei, H., Chegini, F.K., Maghsoudlou, Y., & Dehnad, D. (2015). Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate Polymers, 118, 24-29. https://doi.org/10.1016/j.carbpol.2014.11.015
- Koné, WM., Atindehou, KK., Kacou-N'douba, A., & Dosso, M. (2006). Evaluation of 17 medicinal plants from Northern Côte d'Ivoire for their in vitro activity against Streptococcus pneumoniae. Afr Journal Tradit Complement Altern Medical, 4(1), 17-22. https://doi.org/10.4314/ajtcam.v4i1.31187
- Leonardis, M., Palange, A., FV Dornelles, R., & Hund, F. (2010). Use of cross-linked carboxymethyl cellulose for softtissue augmentation, preliminary clinical studies. Journal of Clinical Interventions in Aging, 5, 317–322. Department of Plastic Surgery, Salvator Mundi International Hospital, Roma. https://doi.org/full/10.2147/CIA.S13813
- Li, N., Jiang, H., Yang, J., Wang, C., Wu, L., Hao, Y., & Liu, Y. (2021). Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. Food Bioscience, 42, 101204. https://doi.org/10.1016/j.fbio.2021.101204
- Liu, Z., Ge, X., Dong, S., Zhao, Y., & Zeng, M. (2012). Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids, 26, 311-317. https://doi.org/10.1016/j.foodhyd.2011.06.008
- Malherbi, N.M., Schmitz, A.C., Grando, R.C., Bilck, A.P., Yamashita, F., Tormen, L., Fakhouri, F.M., Velasco, J.I., & Bertan, L.C. (2019). Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packaging and Shelf Life, 19, 140-146. https://doi.org/10.1016/j.fpsl.2018.12.008
- Ma, Q., Zhang, Y., Critzer, F., Davidson, P., Zivanovic, S., & Zhong, Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids, 52, 533-542. https://doi.org/10.1016/j.foodhyd.2015.07.036
- Miraghaee, S.S., & Karimi, I. (2012) Evaluation of the antioxidant and antimicrobial properties of Dorema aucheri Iran. Red Crescent Medicenal Journal, 14, 684-5.
- Moghadam, M., Salami, M., Mohammadian, M., Khodadadi, M., & Emam-Djomeh, Z. (2020). Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104, 1-8. https://doi.org/10.1016/j.foodhyd.2020.105735
- Mokhtari, M., Sharifi, A., & Parang, A. (2008). Investigation of Dorema aucheri hydroalcoholic extract on hematologic parameters in rats. Journal of the Zanjan University of Medical Sciences, 16, 37-44 http://journal.zums.ac.ir/article-1-382-fa.html
- Mothana, R.A., Hasson, S.S., Schultze, W., Mowitz, A., & Lindequist, U. (2011). Phytochemical composition and in vitro antimicrobial and antioxidant activities of essential oils of three endemic Soqotraen Boswellia Food Chemistry, 126(3), 1149-54. https://doi.org/10.1016/j.foodchem.2010.11.150
- Nazmi, N.N.M., & Sarbon, N.M. (2020). Characterization on antioxidant and physical properties of gelatin based composite films with incorporation of Centella asiatica (Pegaga) extract. Food Research, 4(1), 224-233. https://doi.org/10.3390/membranes12050442
- NurHanani, Z.A., Roos, Y.H., & Kerry, J.P. (2012). Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids, 29, 144-151. https://doi.org/10.1016/j.foodhyd.2012.01.015
- Oluwaseun, A.C., Kayode, A., Bolajok, F.O., Bunmi, A.J., & Olagbaju, A.R. (2013). Effect of edible coatings of carboxymethyl cellulose and corn starch on cucumber stored at ambient temperature. Asian Journal of Agriculture & Biological, 1(3), 133-140. https://doi.org/10.22067/ifstrj.v12i4.34446
- Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E coli 0157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18, 414-420. https://doi.org/10.1016/j.foodcont.2005.11.009
- Pereda, M., Amica, G., & Marcovich, N.E. (2021). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318-25. https://doi.org/10.1016/j.carbpol.2011.09.019
- Prakash, B., Mishra, P.K., Kedia, A., & Dubey, N. (2014). Antifungal, antiaflatoxin and antioxidant potential of chemically characterized Boswellia carterii Birdw essential oil and its in vivo practical applicability in preservation of Piper nigrum fruits. LWT-Food Science and Technology, 56(2), 240-7. https://doi.org/10.1016/j.lwt.2013.12.023
- Roy, S., & Rhim, J.W. (2021). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127220.
- Shakeri, MS., Shahidi, F., Beiraghi‐Toosi, S., & Bahrami, (2011). Antimicrobial activity of Zataria multiflora Boiss. essential oil incorporated with whey protein based films on pathogenic and probiotic bacteria. International Journal Food Science Technology, 46(3), 549-54. (In Persian). https://doi.org/10.1016/j.colsurfa.2021.127220
- Shakeri, M.S., Shahidi, F., Beiraghi‐Toosi, S., & Bahrami, A. (2011). Antimicrobial activity of Zataria multiflora essential oil incorporated with whey protein based films on pathogenic and probiotic bacteria. International Journal Food Science Technology, 46(3), 549-54. (In Persian). https://doi.org/10.1111/j.1365-2621.2010.02519.x
- Souza, VGL., Pires, JRA., Vieira, ÉT., Coelhoso, I.M., Duarte, M.P., & Fernando, A.L.( 2019). Activity of chitosan montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids 89, 241–252. https://doi.org/10.1016/j.foodhyd.2018.10.049
- Sui Chin, S., Han, Lyn, F., & Nur Hanani, Z.A. (2017). Effect of Aloe vera (Aloe barbadensis Miller) gel on the physical and functional properties of fish gelatin films as active packaging. Food Packaging and Shelf Life, 12, 128–134. https://doi.org/10.1016/j.fpsl.2017.04.008
- Taheri-Behrooz, F., Maher, B.M., & Shokrieh, M. (2015) Mechanical properties modification of a thin film phenolic resin filled with nano silica particles. Computational Materials Scienc, 96, 411-5. https://doi.org/10.1016/j.commatsci.2014.08.042
- Tavassoli, M., Sani, M.A., Khezerlou, A., Ehsani, A., & McClements, D.J. (2021). Multifunctional nanocomposite active packaging materials: Immobilization of quercetin, lactoferrin, and chitosan. Nanofiber Particles in Gelatin Films, 118, 106747. https://doi.org/10.1016/j.foodhyd.2021.106747
- Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016). Mechanical thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids, 56, 93-107. https://doi.org/10.1016/j.foodhyd.2015.12.005
- Tongdeesoontorn, W., Mauer, L.J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starchbased films. Chemistry Central Journal, 5(1), 1–8. https://doi.org/10.1186/1752-153X-5-6
- Tongdeesoontorn, W., & Rawdkuen, S. (2019). Gelatin-based films and coatings for food packaging applications. Modulein Food Science, 1-15. https://doi.org/10.5772/intechopen.86245
- Vargas- Torrico, M.F., von Borries- Medrano, E., & Aguilar-Méndez, M.A. (2020). Development of gelatin/carboxymethylcelluloseactive films containing Hass avocado peel extract and their application as a packaging for the preservation of berries. International Journal of Biological Macromolecules, 206, 1012-1025. https://doi.org/10.1016/j.ijbiomac.2022.03.101
- Xue, F., Zhao, M., Liu, X., Chu, R., Qiao, Z., Li, C., & Adhikari, B. (2021). Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Future Foods, 3, 100033. https://doi.org/10.1016/j.fufo.2021.100033
- Yazdi, F.T., Behbahani, B.A., Vasiee, A., Mortazavi, S.A., & Yazdi, F.T. (2015). An investigation on the effect of alcoholic and aqueous extracts of Dorema aucheri (Bilhar) on some pathogenic bacteria in vitro. Journal Paramed. Science, 6, 58-64.9.
- Yoo, S., & Krochta, J.M. (2011). Whey protein– polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. Journal of the Science of Food and Agriculture, 91(14), 2628–2636. https://doi.org/10.1002/jsfa.4502
ارسال نظر در مورد این مقاله