نوع مقاله : مقاله پژوهشی
نویسندگان
گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
توتفرنگی میوهای محبوب با طعم لذیذ و دارای منبع مهمی از مواد مغذی از قبیل مواد معدنی، ویتامینها و پلی فنلها است که حفظ این ویژگیها در شرایط پس از برداشت از اهمیت بالایی برخوردار میباشد. در پژوهش حاضر اثر تیمار پس از برداشت ال-گلوتاتیون (GSH) در غلظتهای (صفر، 4، 16، 32 و 64 میلیمولار) و زمان انبارمانی (5، 10 و 15 روز) بر ویژگیهای فیزیکوشیمیایی میوه توتفرنگی رقم سابرینا طی مدت انبارمانی بهصورت آزمایش فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار مورد بررسی قرار گرفت. بر اساس نتایج، بالاترین میزان اسیدیته قابل تیتراسیون در تیمار 32 میلیمولار (1.25 میلیگرم در 100 گرم وزن میوه) و در روز دهم (1.29 میلیگرم در 100 گرم وزن میوه)، بالاترین میزان موادجامد محلول در تیمار 64 میلیمولار (10 درصد)، کمترین میزان کاهش وزن در تیمار 64 میلیمولار (1.27 درصد) و در روز پنجم (1.12 درصد)، بالاترین ظرفیت آنتیاکسیدانی در تیمار 16 میلیمولار (69.95 درصد)، بالاترین محتوای فنل کل در تیمار 64 میلیمولار (میلیگرم اسید گالیک در 100 گرم وزن تر میوه 764.18) و در روز 15ام ( میلیگرم اسید گالیک در 100 گرم وزن تر میوه 719.14) و بالاترین میزان فعالیت آنزیم پلیفنل اکسیداز (PPO) در تیمار 64 میلیمولار (360 واحد در دقیقه در 100 گرم وزن میوه) مشاهده شد. بطور کلی نتایج نشان داد که تیمار 64 میلیمولار ال-گلوتاتیون با تأثیر مثبت بر سیستم آنتیاکسیدانی و حفظ شاخصهای مناسب توتفرنگی میتواند مناسبترین تیمار باشد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
The Effect of L-glutathione Postharvest Treatment on the Physicochemical Characteristics of Sabrina Strawberry Fruit during Cold Storage
نویسندگان [English]
- Karim Mandahakki
- Hamid Hassanpour
Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]
Introduction
Due to the high rate of respiration, strawberry is prone to water loss, mechanical damage and fungal decay post-harvesting, which may reduce its shelf life (Yan et al., 2019). Food waste is an important global challenge that estimated about 30% of the world's agricultural land. Every year, about 9.5 million tons of food is lost in the post-harvest phase of agriculture crops (Bishop et al., 2021). Post-harvest storage of strawberry at low temperature without using other combined treatments may reduce its shelf life due to its highly perishable nature. Therefore, in addition to low temperature storage, other post-harvest techniques have also been reported to increase the shelf life of strawberry fruits after harvest. One of these techniques is using chemicals (Kahramanoglu et al., 2019).Glutathione is present in various plant tissues in concentrations of 2 to 3 mM and plays an important role in many cellular processes such as cell differentiation, enzyme regulation, cell signaling and cell death and acts as an antioxidant. (Diaz-Vivancos et al., 2015). During the experiment, spraying GSH on strawberry plants increased the amount of total flavonoids and ascorbic acid in the harvested fruits, and the results showed that the application of GSH can increase the shelf life of strawberries. (Ge et al., 2019). It has been reported that application of glutathione after harvesting okra has reduced browning and prevented its weight loss, which has created a suitable market for it, also GSH has increased the level of total phenol and the activity of ascorbate peroxidase enzyme and reduced the level of ROS and malondialdehyde, which can increase the shelf life of okra in cold storage after harvesting (Li et al., 2023).
Materials and Methods
Sabrina strawberry fruit was obtained from a commercial greenhouse located in Urmia in the full maturity stage. The fruits were transported to the laboratory of Horticultural Sciences Department of Urmia University, observing the necessary precautions to prevent mechanical damage. The fruits were separated in terms of size and uniformity, so that the fruits were divided into 5 groups of 15, one group as a control group and 4 groups treated with different concentrations of L-glutathione (4, 16, 32 and 64 mM respectively). After drying, the treated fruits were placed in zipped nylon bags and stored for 15 days in a cold room at ± 0.5 °C and a relative humidity of 90-95%. Also, three biological replicates at each time interval were included in the analysis. Samples obtained at each of specified time were placed to evaluate skin color, titratable acidity, soluble solids, taste index, pH, weight loss, total antioxidant capacity, total phenol content, and polyphenol oxidase enzyme activity.
Results and Discussion
The results of variance analysis showed that the effect of GSH treatment after harvesting, the effect of storage and the interaction between them differently affect each of the studied indicators. In terms of color, no significant effect was found. The effect of storage (p≤0.01) and post-harvest treatment (p≤0.05) were significant on TA trait and its highest value was observed in 10 days of storage with 32 mM. In terms of antioxidant capacity (p≤0.05) and PPO activity (p≤0.01), the effect of GSH treatment after harvest was significant, and the highest amount was observed in 16 and 64 mM treatment, respectively. Also, the effect of storage time (p≤0.05) and the effect of GSH treatment after harvesting (p≤0.01) were significant in the trait of total phenol content, and the highest amount was observed in 15 days of storage and 64 mM treatment. However, both the storage (p≤0.01) and the post-harvest GSH treatment (p≤0.05) effects on fruit weight reduction were significant and the lowest weight loss was observed in 5 days of storage and 64 mM treatment. There were no significant changes in indices such as TSS, taste index and pH.
Conclusion
According to the obtained results, the treatment of 64 mM GSH is the best concentration of GSH to increase the shelf life of harvested strawberry fruits in cold storage.
Author Contributions
Manda-Hakki: conceptualization, data management, financing, research and review, resources, validation, visualization, writing-main draft, Hassanpour: formal analysis, methodology, project management, software, supervision, Writing - review and editing
Funding Sources
Part of this project was financially supported by Urmia University.
Acknowledgement
We appreciate and thank all those who were with us in this project, especially the officials of Horticulture Laboratory, Faculty of Agriculture, Urmia University.
کلیدواژهها [English]
- Antioxidant
- Polyphenol oxidase
- Storage
- Total phenol
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Aghdam, M.S., Moradi, M., Razavi, F., & Rabiei, V. (2019). Exogenous phenylalanine application promotes chilling tolerance in tomato fruits during cold storage by ensuring supply of NADPH for activation of ROS scavenging systems. Scientia Horticulturae, 246, 818–25. https://doi.org/10.1016/j.scienta.2018.11.074
- Akhtar, A., Abbasi, N.A., & Hussain, A. (2010). Effect of calcium chloride treatments on quality characteristics of loguat fruit during storage. Pakistan Journal of Botany, 42, 181–188. https://doi.org/10.22059/ijhst.2015.54260
- Akhond, M., Heidarizadeh, F., & Kolahi, M. (2022). Comparative study of qualitative and chemical characteristics of Camarosa and Parus strawberry cultivars during 15 days of storage. Developmental Biology, 14(2), 43-52. https://www.magiran.com/p2456873
- AL-abbasy, O. Y., Ali, W. I. & Al-lehebe, N. I. (2021). Inhibition of enzymatic browning in fruit and vegetable, review. Samarra Journal of Pure and Applied Science, 3(1), 56–73.
- Ali, H.E.M., & Ismail, G.S.M. (2014). Tomato fruit quality as influenced by salinity and nitric oxide. Turkish Journal of Botany, 38(1), 122-129. https://doi.org/10.3906/bot-1210-44
- Aminifard, M., Aroiee, H., Azizi, M., Nemati, H., & Jaafar, H. (2013). Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum). Journal of Central European Agriculture, 14(2), 525-534. https://doi.org/10.5513/JCEA01/14.2.1232
- Baldwin, A., Dhorajiwala, R., Roberts, C., Dimitrova, S., Tu, S., Jones, S., Ludluw, R.A., Cammarisano, L., Davoli, D., Andrews, R., Kent, N.A., Spadafora, N.D., Muller, C.T., & Rogers, H.J. (2023). Storage of halved strawberry fruits affects aroma, phytochemical content and gene expression, and is affected by pre-harvest factors. Plant Science, 14, 1165056. https://doi.org/10.3389/fpls.2023.1165056
- Bishop, G., Styles, D., & Lens, P.N.L. (2021). Environmental performance of bioplastic packaging on fresh food produce: a consequential life cycle assessment. Journal Clean Prod. 317, 128377. https://doi.org/10.1016/j.jclepro.2021.128377
- Bradford, M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
- Brizzolara, S., Manganaris, G.A., Fotopoulos, V., Watkins, C.B., & Tonutti, P. (2020). Primary metabolism in fresh fruits during storage. Front Plant Science, 11, 1–16. https://doi.org/10.3389/fpls.2020.00080
- Chang, L., Xu, L., Yang, Z., Liu, L., & Qiu, D. (2023). Antibacterial and antioxidative biogenic films for room-temperature strawberry preservation. Food Chemistry. 405, 134983. https://doi.org/10.1016/j.foodchem.2022.134893
- Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., & Jaleel, H. (2015). Jasmonates counter plant stress: A review. Environmental and Experimental Botany, 115, 49–57. http://dx.doi.org/10.1016/j.envexpbot.2015.02.010
- Davarpanah, J., Kiasat, A.R., Noorizadeh, S., & Ghahremani M. (2013). Nano magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid: Synthesis, characterization, and application as an efficient and reusable organic–inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. Journal of Molecular Catalysis A: Chemical, 376, 78–89. https://doi.org/10.1016/j.molcata.2013.04.020
- De Bruno, A., Gattuso, A., Ritorto, D., Piscopo, A., & Poiana, M. (2023). Effect of edible coating enriched with naturpal antioxidant extract and Bergamot essential oil on the shelf life of strawberries. Foods, 12(3), 488. https://doi.org/10.3390/foods12030488
- Diaz-Vivancos, P., de Simone, A., Kiddle, G., & Foyer, CH. (2015). Glutathione-linking cell proliferation to oxidative stress. Free Radical Biology and Medicine, 89, 1154–1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023
- Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress. A review. Agronomy, 9, https://doi.org/10.3390/agronomy9060335
- Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113, 557-562. https://doi.org/10.1016/j.foodchem.2008.08.025
- Erkan, M., & Selcuk, N. (2015). The effects of 1-MCP treatment on fruit quality of medlar fruit (Mespilus germanica cv. Istanbul) during long term storage in the palliflex storage system. Postharvest Biology and Technology, 100, 81–90. https://doi.org/10.1016/j.postharvbio.2014.09.018
- Ge, C., Luo, Y., Mo, F., Xiao, Y.H., Li, N.Y., & Tang, H.R. (2019). Effects of glutathione on the ripening quality of strawberry fruits. AIP Conference Proceedings, 2079, 020013. https://doi.org/10.1063/1.5092391
- Getenit, H., Seyoum, T., & Woldetsdik, K. (2008). The effect of cultivar, maturity stage and storage environment on quality of tomatoes. Journal of Food Engineering, 87, 467-498. https://doi.org/10.1016/j.jfoodeng. 2007.12.031
- Gohari, G., Molaei, S., Kheiry, A., Ghafouri, M., Razavi, F., Lorenzo, J.M., & Juárez-Maldonado, A. (2021). Exogenous application of proline and L-cysteine alleviates internal browning and maintains eating quality of cold stored flat ‘maleki’peach fruits. Horticulturae, 7(11), 469. https://doi.org/10.3390/horticulturae7110469
- Hazbavi, L., Khoshtaghaza, M.H., Mostaan, A., & Banakar, A. (2013). Effect of postharvest hot-water and heat treatment on quality of date palm (cv. Stamaran). Journal of the Saudi Society of Agricultural Sciences, 14, 53-159. https://doi.org/10.1016/j.jssas.2013.10.003
- Holler, M., Alberdi-Cedeno, J., Aunon-Lopez, A., Pointner, T., Martínez-Yusta, A., Konig, J., & Pignitter, M. (2023). Polylactic acid as a promising sustainable plastic packaging for edible oils. Food Packaging and Shelf Life, 36(101051). https://doi.org/10.1016/j.fpsl.2023.101051
- Hu, H., Wang, L., Wang, Q., Jiao, L., Hua, W., Zhou, Q., & Huang, X. (2014). Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environmental Toxicology and Chemistry, 33, 2455–2462. https://doi.org/10.1002/etc.2720
- Jalili Marandi, R. (2013). Postharvest Physiology (handling and storage of fruits, vegetables, ornamental plants and medicinal plants). 4 nd Ed., Jihad University Press, West Azerbaijan Branch, 624 P. (In Persian)
- Jalili Marandi, R. (2016). Small fruits. Urmia Academic Jahad Publications. (In Persian)
- Kahramanoglu, I. (2019). Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Science Horticultural, 256, 108527. https://doi.org/10.1016/j.scienta.2019.05.054
- Keshavarz Afshar, F. (2017). Postharvest effects of phenylalanine, sodium hydrosulfide, and hydrogen sulfide on the biochemical and antioxidant properties of Meles Saveh pomegranate fruit during cold storage. Master thesis of Zanjan University Faculty of Agriculture. 90 pages.
- Kuzniak, E., & SkLodowska, M. (2004). Differential implication of glutathione, glutathione-metabolizing enzymes and ascorbate in tomato resistance to pseudomonas syringae. Journal Phytopathology, 152(10), 529–536. https://doi.org/10.1111/j.1439-0434.2004.00884.x
- Treviño Garza, M.Z., García, S., Del Socorro Flores González, M., & Arévalo Niño, K. (2015). Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Sciences, 80(8), 1823-1830. https://doi.org/10.1111/1750-3841.12938
- Li, X., Bao, Z., Chen, Y., Lan, Q., Song, C., Shi, L., Chen, W., Gao, S., Yang, Z., & Zheng, Q. (2023). Exogenous glutathione modulates redox homeostasis in okra (Abelmoschus esculentus) during storage. Postharvest Biology and Technology, 195, 11245. https://doi.org/10.1016/j.postharvbio.2022.112145
- Li, Z.G., Xu, Z.C., & Su, Y.S. (2010). Research progress in plant glutathione. Jiangsu Journal of Agricultural Sciences, 22, 118-121.
- Meng, X., Li, B., Liu, J., & Tina, S. (2007). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106, 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012
- Nakajima, J.I., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. Biomed Research International, 241-247. https://doi.org/10.1155/S1110724304404045
- Pathare, P.B., Opara, L.U., & Al-Said, A.F. (2013). Colour measurement and analysis in fresh and processed food: A review. Food Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9
- Pelayo-Zaldivar, C., Ebeler, S.E., & Kader, A. (2005). Cultiver and harvest date effect on flavor and other quality attributes of California strawberries. Journal of Food Quality, 28, 78-97. https://doi.org/10.1111/j.1745-4557.2005.00005.x
- Pizzocaro, F., Torreggiani, D., & Gilardi, G. (1993). Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. Journal of Food Processing and Preservation, 17, 21 30. https://doi.org/10.1111/j.1745-4549.1993.tb00223.x
- Pott, D.M., Osorio, S., & Vallarino, J.G. (2019). From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 10, 835. https://doi.org/10.3389/fpls.2019.00835
- Ramzan, M., Aslam, M.N., Akram, S., Shah, A.A., Danish, S., Islam, W., Mustafa, A.E.M.A., Al-Ghamdi, A.A., & Alajmi, A.H. (2020). Exogenous glutathione revealed protection to bacterial spot disease: Modulation of photosystem II and H2O2 scavenging antioxidant enzyme system in Capsicum annum Journal of King Saud University – Science, 33, 101223. https://doi.org/10.1016/j.jksus.2020.10.020
- Ranjbar Malidarreh, T., Askari Sarcheshmeh, M.A., Babalar, M., Shokri Heydari, H., & Ahmadi, A. (2019). Changes in some physiological and biochemical characteristics of plum (Prunus salicina Flavor supreme pluot) affected by salicylic acid and iron pretreatment during storage with two different temperatures. Iranian Journal of Horticultural Science, 55(3), 525-539. (In Persian). https://doi.org/10.22059/ijhs.2019.278214.1620
- Ren, H., Yang, G., Feng, E. X., He, S., & Huang, Q. (2023). First report of mucorinaequisporus dade (Mucorales, Mucoromycota) causing postharvest rot ofstrawberry fruit in Kunming, China. Plant Disease, 107(1), 2241. https://doi.org/10.1094/PDIS-09-22-2262-PDN
- Ryalls, J., Neuenschwander, U., Willits, M., Molina, A., Steiner, H.Y., & Hunt, M. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819. https://doi.org/10.1105/tpc.8.10.1809
- Sowmyashree, A., Sharma, R., Rudra, S.G., & Grover, M. (2021). Layer-by-Layer coating of hydrocolloids and mixed plant extract reduces fruit decay and improves postharvest life of nectarine fruits during cold storage. Acta Physiologiae Plantarum, 43(8), 112. https://doi.org/10.1007/s11738-021-03256-8
- Taiz, L., Zeiger, E., Moller, I., & Murphy, A. (2017). Physiology and plant development. Porto Alegre: Artmed. 858. https://doi.org/10.1093/aob/mcg079
- Vallarino, J.G., de Abreu e Lima, F., Soria, C., Tong, H., Pott, D.M., Willmitzer, L., Fernie, A.R., Nikoloski, Z., & Osorio, S. (2018). Genetic diversity of strawberry germplasm using metabolomic biomarkers. Scientific Reports, 8, 14386. https://doi.org/10.1038/s41598-018-32212-9
- Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant Cell Environ, 13, 195–206. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
- Xu, D.Y., Zuo, J.Y., Fang, Y.L., Yan, Z.C., Shi, J.Y., Gao, L.P., Wang, Q., & Jiang, A.L. (2021). Effect of folic acid on the postharvest physiology of broccoli during storage. Food Chemistry, 339, 127981. https://doi.org/10.1016/j.foodchem.2020.127981
- Yan, J., Luo, Z., Ban, Z., Lu, H., Li, D., Yang, D., & Li, L. (2019). The effect of the layer bylayer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology, 147, 29–38. https://doi.org/10.1016/j.postharvbio.2018.09.002
- Yang, Z., Cao, S., Cai, Y., & Zheng, Y. (2011). Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Innovative Food Science and Emerging Technologies, 12, 310-314. https://doi.org/10.1016/j.ifset.2011.04.010
- Yao, M., Ge, W., Zhou, Q., Zhou, X., Luo, M., Zhao, Y., Wei, B., & Ji, S. (2021). Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352, 129458. https://doi.org/10.1016/j.foodchem.2021.129458
ارسال نظر در مورد این مقاله