با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

علم رئولوژی کاربردهای زیادی در فرآوری و انتقال مواد غذایی دارد. بررسی قوام و رفتار جریان هیدروکلوئیدها در حضور ترکیبات مختلف به‌دلیل خواص ساختاری و بافتی که در مواد غذایی ایجاد می‌کنند، بسیار مهم است. از اسیدهای آلی خوراکی آلی مانند اسید مالیک، اسید سیتریک، اسید آسکوربیک و اسید تارتاریک برای کنترل pH در برخی از محصولات غذایی استفاده می‌شود. در این مطالعه اثر این چهار اسید آلی خوراکی بر ویسکوزیته و رفتار رئولوژیکی محلول صمغ دانه بالنگو بررسی شد. برای تهیه محلول‌های مورد استفاده جهت آزمایش‌های رئولوژیکی، 0.2 درصد (وزنی/حجمی) از پودر صمغ دانه بالنگو درون محلول تهیه شده از هر اسید در دو غلظت 0.5 و 1 درصد، توسط همزن مغناطیسی به‌صورت کامل حل شد. برای اندازه‌گیری خصوصیات رئولوژیکی محلول‌های حاوی اسید و صمغ دانه بالنگو، از یک ویسکومتر چرخشی استفاده شد. یافته‌های این مطالعه نشان داد که ویسکوزیته ظاهری محلول صمغ دانه بالنگو با افزایش سرعت برشی کاهش می‌یابد. علاوه بر این، ویسکوزیته ظاهری محلول صمغ دانه بالنگو با افزایش غلظت اسیدهای آلی کاهش یافت. بیشترین کاهش ویسکوزیته مربوط به محلول حاوی 1 درصد اسید سیتریک و کمترین آن مربوط به اسید تارتاریک با غلظت 0.5 درصد بود. مدل قانون توان بهترین مدل برای توصیف رفتار محلول‌های صمغ دانه بالنگو حاوی اسیدهای آلی بود. نتایج براش داده‌های سرعت برشی-تنش برشی محلول شاهد صمغ دانه بالنگو نشان داد که مجموع مربعات خطا مدل‌های قانون توان، بینگهام، هرشل بالکلی و کاسون به‌ترتیب برابر 0.0016، 0.0870، 0.0016 و 0.0231 است. با افزایش درصد اسید، ضریب قوام نمونه‌ها کاهش یافت. نمونه‌های حاوی 1% اسید سیتریک دارای کمترین ضریب قوام و نمونه‌های حاوی 0.5% اسید مالیک دارای بیشترین ضریب قوام بودند. با افزودن اسید به محلول صمغ دانه بالنگو، شاخص رفتار جریان اکثر نمونه‌ها افزایش یافت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Effect of Different Concentrations of Organic Acids (Ascorbic, Citric, Malic, and Tartaric) on the Viscosity and Rheological Properties of Balangu Seed Gum

نویسندگان [English]

  • Fakhreddin Salehi
  • Maryam Tashakori
  • Kimia Samary

Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran

چکیده [English]

Introduction
Balangu seed gum (BSG) is a hydrocolloid extracted from the seeds of Lallemantia royleana L.. This gum works as thickener and stablilizer in food products. This gum had high performance compared to some commercially available food grade gums. When this gum is mixed with water, it becomes thick (viscous fluid) and this gel-like substance becomes thin when stirred or shaken (pseudoplastic behavior) (Salehi & Inanloodoghouz, 2023). The term organic acid refers to organic compounds with acidic properties. The acidity of organic acids is associated with their carboxyl group and therefore they are called carboxylic acids. Organic acids can be classified according to the type of carbon chain (aliphatic, alicyclic, aromatic, and heterocyclic), their extent of saturation and substitution, and the number of carboxyl groups (mono-, di-, tri-carboxylic). Monocarboxylic acids like acetic acid are highly volatile liquids with a pungent taste. Malic and tartaric acids are also dicarboxylic acids that contain one and two hydroxyl groups, respectively. Citric acid is the best-known tricarboxylic acid with one hydroxyl group that is found in foods (Yildiz, 2010). The most abundant organic acid in citrus juice is citric acid. Also, citrus juices such as lemons, oranges, and grapefruits are a good source of ascorbic acid (Nour et al., 2010). pH is an important parameter that affects the rheological properties of hydrocolloid solutions. Addition of acid to an aqueous gum solution leads to changes in pH which affect the viscosity of this solution (Hayta et al., 2020). In this study the effect of four edible organic acids (ascorbic, citric, malic, and tartaric) at two concentrations (0.5, and 1 %) on the viscosity and rheological behavior of Balangu seed gum solution (0.2%, w/v) was investigated.
Material and Methods
In this research, organic acids including ascorbic, citric, malic, and tartaric were purchased in powder form (China) and dissolved in distilled water. Two concentrations of each acid, 0.5% and 1%, were prepared, and the distilled water was considered as the control (0% acid). The Balangu seed gum solutions were prepared by disolving the gum powder (0.20%, w/v) in distilled water containing different concentrations of ascorbic, citric, malic, and tartaric acids using a magnetic stirrer. The rheological parameters of Balangu seed gum dispersions were measured using a viscometer (Brookfield, DV2T, RV, USA) at 20°C. Power law, Bingham, Herschel-Bulkley, and Casson models are common ways of representing the behavior of several gum dispersions. In this research, these models were used to match the shear stress and shear rate results of the gum solutions containing edible organic acids. Differences between means were established using Duncan’s multiple range using SPSS (version 21).
Results and Discussion
The findings of this study showed that the apparent viscosity of Balangu seed gum solution reduced when the shear rate increased. Additionally, the apparent viscosity of the Balangu seed gum solution reduced as the organic acids concentration increased. The highest decrease in viscosity was related to solution containing 1% citric acid and the lowest was related to tartaric acid with a concentration of 0.5%. The rheological behavior of solutions was successfully modeled using Power law, Bingham, Herschel-Bulkley, and Casson models, and the Power law model was the best one for describing the behavior of Balangu seed gum solutions containing organic acids. The Power law model had a good performance with the highest correlation coefficient (>0.9406) and least sum of squared error (<0.0090) and root mean square error (<0.0275) for all samples. The consistency coefficient of the samples reduced as the acid percent was increased. Sample containing 1% citric acid had the lowest consistency coefficient and sample containing 0.5% malic acid had the highest consistency coefficient. The Power law model shows that a fluid with shear-thinning behavior has a value of flow behavior index less than 1 (Kumar et al., 2021). By adding acid to Balangu seed gum solution, the flow behavior index of most samples increased. The Bingham yield stress of all samples reduced when acids percent was increased. The dispersion containing 1% citric acid had the lowest Bingham yield stress and the sample containing 0.5% tartaric acid had the highest yield stress. The Bingham plastic viscosity of the samples reduced when acids percent was increased. The solution containing 0.5% ascorbic acid had the highest Bingham plastic viscosities (0.0038 Pa.s) and the sample containing 0.5% malic acid had the lowest plastic viscosities (0.0014 Pa.s). The results showed that when the ascorbic acid concentration was increased from 0.5% to 1%, the Casson plastic viscosities of the Balangu seed gum solution was decreased significantly from 0.054 Pa.s to 0.042 Pa.s (p<0.05).
 Conclusion
The results of this study indicated that it is a mistake to use Balangu seed gum in food products containing high concentrations of citric acid, and this acid reduces the viscosity and consistency of the products containing this gum.

کلیدواژه‌ها [English]

  • Balangu seed gum
  • Consistency coefficient
  • Flow behavior index
  • Herschel-Bulkley
  • Organic acid

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Amin, A.M., Ahmad, A.S., Yin, Y.Y., Yahya, N., & Ibrahim, N. (2007). Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocolloids, 21(2), 273-279. https://doi.org/10.1016/j.foodhyd.2006.04.004
  2. Behrouzian, F., Razavi, S.M.A., & Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. International Journal of Food Science & Technology, 48(12), 2506-2513. https://doi.org/10.1111/ijfs.12242
  3. Brenelli, S., Campos, S., & Saad, M. (1997). Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects. Brazilian Journal of Medical and Biological Research, 30(12), 1437-1440. https://doi.org/10.1590/S0100-879X1997001200009
  4. Farahnaky, A., Shanesazzadeh, E., Mesbahi, G., & Majzoobi, M. (2013). Effect of various salts and pH condition on rheological properties of Salvia macrosiphon hydrocolloid solutions. Journal of Food Engineering, 116(4), 782-788. https://doi.org/10.1016/j.jfoodeng.2013.01.036
  5. Hayta, M., Dogan, M., & Aslan Türker, D. (2020). Rheology and microstructure of galactomannan–xanthan gum systems at different pH values. Journal of Food Process Engineering, 43(12), e13573. https://doi.org/10.1111/jfpe.13573
  6. Jannatamani, H., Motamedzadegan, A., Farsi, M., & Yousefi, H. (2022). Rheological properties of wood/bacterial cellulose and chitin nano-hydrogels as a function of concentration and their nano-films properties. IET Nanobiotechnology, 16(4), 158-169. https://doi.org/10.1049/nbt2.12083
  7. Kang, J., Yue, H., Li, X., He, C., Li, Q., Cheng, L., Zhang, J., Liu, Y., Wang, S., & Guo, Q. (2023). Structural, rheological and functional properties of ultrasonic treated xanthan gums. International Journal of Biological Macromolecules, 246, 125650. https://doi.org/10.1016/j.ijbiomac.2023.125650
  8. Koocheki, A., Hesarinejad, M.A., & Mozafari, M.R. (2022). Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts. Chemical and Biological Technologies in Agriculture, 9(1), 61. https://doi.org/10.1186/s40538-022-00322-2
  9. Kumar, Y., Roy, S., Devra, A., Dhiman, A., & Prabhakar, P.K. (2021). Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT, 149, 111632. https://doi.org/10.1016/j.lwt.2021.111632
  10. Liu, J., Shen, J., Shim, Y.Y., & Reaney, M.J.T. (2016). Carboxymethyl derivatives of flaxseed (Linum usitatissimum) gum: characterisation and solution rheology. International Journal of Food Science & Technology, 51(2), 530-541. https://doi.org/10.1111/ijfs.12985
  11. Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids, 14(5), 417-424. https://doi.org/10.1016/S0268-005X(00)00015-1
  12. Mullineux, G., & Simmons, M.J.H. (2008). Influence of rheological model on the processing of yoghurt. Journal of Food Engineering, 84(2), 250-257. https://doi.org/10.1016/j.jfoodeng.2007.05.015
  13. Nor Hayati, I., Wai Ching, C., & Rozaini, M.Z.H. (2016). Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloids, 53, 199-208. https://doi.org/10.1016/j.foodhyd.2015.04.032
  14. Nour, V., Trandafir, I., & Ionica, M.E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 44-48. https://doi.org/10.15835/nbha.43.2.10081
  15. Ozgur, A., Dogan, M., & Karaman, S. (2017). Rheological interactions of the xanthan gum and carboxymethyl cellulose as alternative to pectin in organic acid–sucrose model system: simplex lattice mixture design approach. European Food Research and Technology, 243(6), 1041-1056. https://doi.org/10.1007/s00217-016-2809-7
  16. Rana, V., Rai, P., Tiwary, A.K., Singh, R.S., Kennedy, J.F., & Knill, C.J. (2011). Modified gums: Approaches and applications in drug delivery. Carbohydrate Polymers, 83(3), 1031-1047. https://doi.org/10.1016/j.carbpol.2010.09.010
  17. Salehi, F. (2020). Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. Journal of Texture Studies, 51(2), 361-370. https://doi.org/10.1111/jtxs.12482
  18. Salehi, F., & Inanloodoghouz, M. (2023). Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. International Journal of Biological Macromolecules, 253, 127828. https://doi.org/10.1016/j.ijbiomac.2023.127828
  19. Salehi, F., Razavi Kamran, H., & Goharpour, K. (2023). Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process. Ultrasonics Sonochemistry, 99, 106591. https://doi.org/10.1016/j.ultsonch.2023.106591
  20. Salehi, F., Samary, K., & Tashakori, M. (2024). Influence of organic acids on the viscosity and rheological behavior of guar gum solution. Results in Engineering, 22, 102307. https://doi.org/10.1016/j.rineng.2024.102307
  21. Satorabi, M., Salehi, F., & Rasouli, M. (2021). The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science, 21(1), 468-480. https://doi.org/10.1080/15538362.2021.1898520
  22. Sharoba, A.M., & Ramadan, M.F. (2011). Rheological behavior and physicochemical characteristics of goldenberry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 35(2), 201-219. https://doi.org/10.1111/j.1745-4549.2009.00471.x
  23. Sun, H., Jiang, Y., Zhang, Y., & Jiang, L. (2024). A review of constitutive models for non-Newtonian fluids. Fractional Calculus and Applied Analysis. https://doi.org/10.1007/s13540-024-00294-0
  24. Yildiz, F. (2010). Food acids: Organic acids, volatile organic acids, and phenolic acids, in: Yildiz, F. (Ed.), Advances in Food Biochemistry, 1st Edition ed. CRC Press, Boca Raton, p. 28. https://doi.org/10.1201/9781420007695-15
  25. Yousefi, A., Elmarhoum, S., Khodabakhshaghdam, S., Ako, K., & Hosseinzadeh, G. (2022). Study on the impact of temperature, salts, sugars and pH on dilute solution properties of Lepidium perfoliatum seed gum. Food Science & Nutrition, 10(11), 3955-3968. https://doi.org/10.1002/fsn3.2991
CAPTCHA Image