با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانو فناورى مواد غذایى، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

2 گروه نانوفناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

3 گروه فناوری های سبز مواد غذایى، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

این تحقیق به بررسی اثر بهبوددهندگی ژل­ پرشده امولسیونی حاوی بتاکاروتن بر پارامترهای کیفی برنج اکسترودشده مخلوط آرد کینوا-برنج پرداخته است. برنج اکسترودشده حاوی سطح­‌های مختلف ژل پرشده امولسیونی (30، 35 و 40 درصد وزنی/وزنی) تهیه شد و با نمونه برنج اکسترود شده بدون حضور ژل پرشده امولسیونی (نمونه کنترلی) مورد مقایسه قرار گرفت. ژل پرشده امولسیونی با استفاده از بستر ژلی آلژِینات سدیم (غلظت 4 درصد وزنی-وزنی) و امولسیون پیکرینگ (15 درصد حجمی/حجمی حامل بتاکاروتن با غلظت 0.1 درصد) تهیه گردید. با افزایش غلظت ژل پر شده امولسیونی از 30 به 40 درصد وزنی- وزنی، افزایش در میزان رطوبت، خاکستر، افزایش قد و زمان پخت دانه‌­های برنج اکسترود شده مشاهده شد. در مقابل کاهش چسبندگی و افزایش سختی با افزایش افزودن غلظت ژل پر شده امولسیونی همراه بود. نمونه کنترل بیشترین چسبندگی و کمترین سختی را نشان داد. شفافیت دانه‌­های برنج اکسترود شده نیز با افزایش سطح ژل پرشده امولسیونی بهبود یافت و در سطح 40 درصد به حداکثر رسید. ارزیابی حسی نشان داد که نمونه با سطح 40 درصد وزنی-وزنی ژل پرشده امولسیونی بیشترین امتیاز را از نظر پذیرش کلی و سایر پارامترهای حسی داراست. مقایسه خواص حسی و بافتی نمونه بهینه برنج اکسترود شده مخلوط آرد کینوا- برنج با برنج طبیعی واریته هاشمی، خواص حسی نزدیک به نمونه طبیعی و ویژگی­های پخت مناسب را نشان داد و در نتیجه می­‌توان آن را به‌عنوان جایگزینی مناسب برای برنج طبیعی معرفی کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improving the Physico-mechanical Properties of Extruded Rice Based on Mixed Rice-quinoa Flours Using Pickering Emulsion-filled Gel Containing Beta-carotene

نویسندگان [English]

  • Maryam Davtalab 1
  • Sara Naji-Tabasi 2
  • Mostafa Shahidi 3

1 Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

2 Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

3 Department of Green Technologies in Food Production and Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

چکیده [English]

Introduction
Rice is a strategic product and considered as staple food of over half of the world's population particularly in Iran. Considering the high levels of rice waste, including broken grains or those of lower quality, it can be utilized for producing value-added foods and reducing waste. Extrusion is a process widely used to improve food products and develop fortified foods. Quinoa flour is rich in phenols, and can be utilized to produce fortified extruded rice. The extrusion of gluten free flours like rice and quinoa has different challenges. In this study, sodium alginate was used to prepare emulsion filled gel to enhance the stability of Pickering emulsions containing β-carotene and also structuring rice during extrusion process. Pickering emulsion is one of the encapsulation methods suitable for encapsulating lipophilic compounds like β-carotene. Emulsion-filled gels, developed using hydrocolloid mixtures, significantly enhance emulsion stability and make them suitable for aqueous food environments. Finally, extruded rice based on a mixture of rice- quinoa flours and fortified with beta-carotene was prepared, and its physico-mechanical properties were evaluated.
Materials and Methods
Pickering emulsions were stabilized using whey protein- cress gum soluble complex nanoparticles. Beta-carotene was dissolved in the oil phase at a concentration of 0.1%. Subsequently, 4% (w/v) sodium alginate was used to develop emulsions filled-gel.
The Pickering emulsion was dispersed in the sodium alginate gel at a ratio of 15:85. Extruded rice was then prepared using an equal ratio (50:50) of broken rice flour and quinoa flour via a cold extruder. To evaluate the impact of the gel-filled emulsion on improving the characteristics of rice grains, different concentrations (30%, 35%, and 40% w/w) of the gel-filled emulsion (based on flour weight) were added to the mixture. The physico-mechanical tests (moisture content, ash content, optimum cooking time, water absorption ratio, cooking loss, lateral expansion, textural characteristics of rice, color properties, sensory analysis, structural morphology, Beta-carotene stability) were conducted. Duncan test was utilized to identify statistically significant differences (p<0.05) among the means, while one-way analysis of variance (ANOVA) was employed to investigate the impact of various factors.
 Results and Discussion
The incorporation of emulsions filled-gel into quinoa-rice blend significantly influenced the physico-mechanical properties of extruded rice. As the concentration of emulsions filled-gel increased from 30% to 40% (w/w), there was a significant increase in moisture content, ash content, expansion ratio, and cooking time. Extruded rice samples with emulsion-filled gel exhibited significantly greater β-carotene stability than those without, both after cooking and during storage. Conversely, adhesiveness decreased while hardness increased with increasing emulsion filled-gel concentrations. The control sample exhibiting the highest adhesiveness and lowest hardness. The lightness of the extrudates was also improved with increasing emulsion filled-gel levels, reaching a maximum at 40% (w/w). Sensory evaluation revealed that the 40% emulsion filled-gel level was the most preferred sample by panelists. The optimized extruded rice closely resembled natural Hashemi rice in terms of sensory and textural properties.
Conclusion
The findings of this study demonstrate that the addition of emulsions filled-gel enriched with beta-carotene can effectively enhance the physico-mechanical properties of extruded quinoa-rice blends. Specifically, increasing the emulsion concentration resulted in improving expansion, textural, and appearance properties of the rice. 40% emulsion filled-gel was found to be optimal, resulting in a product with desirable sensory attributes. This research proposes that extruded rice based on mixed rice-quinoa flours enriched with beta-carotene-loaded emulsion-filled gel can provide a nutritious and appealing alternative to broken rice products, leveraging the nutritional benefits of quinoa. Sensory and textural evaluation revealed that the extruded rice exhibited sensory properties highly similar to natural Hashemi rice, coupled with favorable cooking characteristics. Consequently, it can be introduced as a suitable substitute for natural rice.

کلیدواژه‌ها [English]

  • β-carotene
  • Cress seed gum
  • Pickering
  • Quinoa
  • Whey protein

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Alajil, O., Hymavathi, T., Robert, P., & Deepika, L. (2018). Effect of flour composition and temperature on physico-chemical and sensory properties of quinoa based extrudates. Journal of Pharmaceutical Research International, 24(5), 1-13. https://doi.org/10.9734/JPRI/2018/45346
  2. Awolu, O.O., Magoh, A.O., & Ojewumi, M.E. (2020). Development and evaluation of extruded ready-to-eat snack from optimized rice, kersting’s groundnut and lemon pomace composite flours. Journal of Food Science and Technology, 57, 86-95. https://doi.org/10.1007/s13197-019-04033-9
  3. Basilio-Atencio, J., Condezo-Hoyos, L., & Repo-Carrasco-Valencia, R. (2020). Effect of extrusion cooking on the physical-chemical properties of whole kiwicha (Amaranthus caudatus) flour variety centenario: Process optimization. LWT, 128, 109426. https://doi.org/10.1016/j.lwt.2020.109426
  4. Becker, F.S., Eifert, E.D.C., Soares Junior, M.S., Tavares, J.-A.S., & Carvalho, A.V. (2014). Physical and functional evaluation of extruded flours obtained from different rice genotypes. Ciência e Agrotecnologia, 38, 367-374. https://doi.org/10.1590/S1413-70542014000400007
  5. Bouasla, A., & Wójtowicz, A. (2021). Gluten-free rice instant pasta: Effect of extrusion-cooking parameters on selected quality attributes and microstructure. Processes, 9(4), 693. https://doi.org/10.3390/pr9040693
  6. Buyukkestelli, H.I., & El, S.N. (2019). Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering, 263, 446-453. https://doi.org/10.1016/j.jfoodeng.2019.07.026
  7. Cai, J., Zhang, D., & Xie, F. (2024). The role of alginate in starch nanocrystals-stabilized Pickering emulsions: From physical stability and microstructure to rheology behavior. Food Chemistry, 431, 137017. https://doi.org/10.1016/j.foodchem.2023.137017
  8. Castellanos-Gallo, L., Galicia-García, T., Estrada-Moreno, I., Mendoza-Duarte, M., Márquez-Meléndez, R., Portillo-Arroyo, B., & Sanchez-Aldana, D. (2019). Development of an expanded snack of rice starch enriched with amaranth by extrusion process. Molecules, 24(13), 2430. https://doi.org/10.3390/molecules24132430
  9. Committee, A.A.O.C.C.A.M. (2000). Approved methods of the American association of cereal chemists.
  10. Davtalab, M., Naji-Tabasi, S., Shahidi-Noghabi, M., Martins, A.J., Bourbon, A.I., & Cerqueira, M.A. (2024). Pickering emulsion stabilized by different concentrations of whey protein–cress seed gum nanoparticles. Foods, 13(23), 3777. https://doi.org/10.3390/foods13233777
  11. Farjami, T., & Madadlou, A. (2019). An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.02.043
  12. Gao, L., Xu, Z., Zhang, R., Qin, Y., Ji, N., Wang, Y., & Sun, Q. (2023). Effects of erythritol on rheological properties of rice flour and structural characteristics of extruded dried rice noodles with rapid rehydration behaviors. Food Hydrocolloids, 109007. https://doi.org/10.1016/j.foodhyd.2023.109007
  13. Geng, M., Wang, Z., Qin, L., Taha, A., Du, L., Xu, X., & Hu, H. (2022). Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocolloids, 123, 107146. https://doi.org/1016/j.foodhyd.2021.107146
  14. Godoy, R. (2015). Quinoa and rice co-products gluten free-cereals: Physical, chemical, microbiological and sensory qualities.
  15. Golding, M., & Wooster, T.J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101. https://doi.org/10.1016/j.cocis.2009.11.006
  16. Guan, C., Liu, J., Gan, S., Xiong, G., Qiao, F., Mo, W., & Lin, Q. (2023). Effects of soluble soybean polysaccharide on cooking and eating quality of dry rice noodles under single-and twin-screw extrusions. LWT, 187, 115352. https://doi.org/10.1016/j.lwt.2023.115352
  17. Hooper, S.D., Bassett, A., Wiesinger, J.A., Glahn, R.P., & Cichy, K.A. (2023). Extrusion and drying temperatures enhance sensory profile and iron bioavailability of dry bean pasta. Food Chemistry Advances, 3, 100422. https://doi.org/10.1016/j.focha.2023.100422
  18. Iqbal, S., Chen, X.D., Kirk, T.V., & Huang, H. (2020). Controlling the rheological properties of W1/O/W2 multiple emulsions using osmotic swelling: Impact of WPI-pectin gelation in the internal and external aqueous phases. Colloids and Surfaces B: Biointerfaces, 185, 110629. https://doi.org/10.1016/j.colsurfb.2019.110629
  19. Kraithong, S., & Rawdkuen, S. (2020). Effects of food hydrocolloids on quality attributes of extruded red Jasmine rice noodle. PeerJ, 8, e10235. https://doi.org/10.7717/peerj.10235
  20. Kraithong, S., Theppawong, A., Lee, S., & Huang, R. (2023). Understanding of hydrocolloid functions for enhancing the physicochemical features of rice flour and noodles. Food Hydrocolloids, 108821. https://doi.org/10.1016/j.foodhyd.2023.108821
  21. Lim, H.-P., Ho, K.-W., Singh, C.K.S., Ooi, C.-W., Tey, B.-T., & Chan, E.-S. (2020). Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids, 105659. https://doi.org/10.1016/j.foodhyd.2020.105659
  22. Liu, X., Zhao, J., Zhang, X., Li, Y., Zhao, J., Li, T., & Qiao, L. (2018). Enrichment of soybean dietary fiber and protein fortified rice grain by dry flour extrusion cooking: The physicochemical, pasting, taste, palatability, cooking and starch digestibility properties. RSC Advances, 8(47), 26682-26690. https://doi.org/10.1039/C8RA01781F
  23. Lv, D., Zhang, P., Chen, F., & Yin, L. (2022). Effects of emulsion concentration on the physicochemical properties of wheat bran arabinoxylan-soy protein isolate emulsion-filled gels used as β-carotene carriers. Lwt, 153, 112498. https://doi.org/1016/j.lwt.2021.112498
  24. Meng, W., Sun, H., MU, T.-H., & Garcia-Vaquero, M. (2024). Exploring pickering emulsions stabilized by chitosan and multiple seaweed polyphenols for an efficient protection and delivery of β-Carotene. ACS Food Science & Technology, 4(5), 1287-1300. https://doi.org/10.1021/acsfoodscitech.4c00178
  25. Miazek, K., Beton, K., Śliwińska, A., & Brożek-Płuska, B. (2022). The effect of β-carotene, tocopherols and ascorbic acid as anti-oxidant molecules on human and animal in vitro/in vivo studies: A review of research design and analytical techniques used. Biomolecules, 12(8), 1087. https://doi.org/10.3390/biom12081087
  26. Mirzaei, M., Movahhed, S., Asadollahzadeh, M.J., & Ahmadi Chenarbon, H. (2021). Effect of carboxymethylcellulose and locust bean gums on some of physicochemical, mechanical, and textural properties of extruded rice. Journal of Texture Studies, 52(1), 91-100. https://doi.org/10.1111/jtxs.12563
  27. Mitra, P., Pakki, S.M., Acharya, B., & Khanvilkar, S. (2023). Optimization of single screw extrusion processing variables and soy and rice flour blend formulations based on physical properties of extrudates. Current Chinese Science, 3(4), 263-274. https://doi.org/10.2174/2210298103666230203121700
  28. Muñoz-Pabon, K.S., Roa-Acosta, D.F., Hoyos-Concha, J.L., Bravo-Gómez, J.E., & Ortiz-Gómez, V. (2022). Quinoa snack production at an industrial level: effect of extrusion and baking on digestibility, bioactive, rheological, and physical properties. Foods, 11(21), 3383. https://doi.org/10.3390/foods11213383
  29. Naji‐Tabasi, S., Shahidi‐Noghabi, M., Modiri Dovom, A., & Davtalab, M. (2023a). The use of hydrogel structures in production of extruded rice and investigation of its qualitative characteristics. Food Science Nutrient, 11(10), 5873-5881. https://doi.org/10.1002/fsn3.3466
  30. Naji‐Tabasi, S., Shahidi‐Noghabi, M., Modiri Dovom, A., & Davtalab, M. (2023b). The use of hydrogel structures in production of extruded rice and investigation of its qualitative characteristics. Food Science & Nutrition. https://doi.org/10.1002/fsn3.3466
  31. Naji, S., Razavi, S.M., & Karazhiyan, H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids, 28(1), 75-81. https://doi.org/10.1016/j.foodhyd.2011.11.012
  32. Nourbehesht, N., Shekarchizadeh, H., & Soltanizadeh, N. (2018). Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics Sonochemistry, 42, 585-593. https://doi.org/10.1016/j.ultsonch.2017.12.029
  33. Puspitasari, D.A., Pudjianto, K., Darussalam, A., Wicaksana, G.H., & Hastuti, H.P. (2024). The effect of sodium tripolyphosphate and guar gum on physical characteristics of analog rice from Gaplek flour. AgriTECH, 44(2), 153-160. https://doi.org/10.22146/agritech.78300
  34. Putri, R., Rohmah, K., Lestari, I., Bahlawan, Z., Astuti, W., Kusumaningrum, M., & Purwanti, D. (2022). Physical characteristics and nutritional value of cassava analogue rice with fortified protein tempeh and the addition of xanthan gum for healthy dieters. Paper presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/969/1/012036
  35. Qadir, N., & Wani, I.A. (2023). Functional properties, antioxidant activity and in-vitro digestibility characteristics of brown and polished rice flours of Indian temperate region. Grain & Oil Science and Technology, 6(1), 43-57. https://doi.org/10.1016/j.gaost.2022.12.001
  36. Qi, W., Ma, C.M., Xing, W.J., Fan, J., Yang, Y., Yang, C.H., & Zhang, N. (2023). Effects of extrusion on physical properties of glutinous rice and its application in the improvement of quality characteristics of glutinous rice products. Journal of Food Science. https://doi.org/10.1111/1750-3841.16683
  37. Radu, G.L., Litescu, S.C., Albu, C., Teodor, E., & Truica, G. (2012). Beta-carotene and lycopene determination in new enriched bakery products by HPLC-DAD method. Romanian Biotechnological Letters, 17(1), 7006.
  38. Ranjbar, S., Basiri, A., Elhamirad, A.H., Sharifi, A., & Chenarbon, H.A. (2018). Effect of hydrocolloids on physicochemical, sensory and textural properties of reconstructed rice grain by extrusion cooking technology. Journal of Food Measurement and Characterization, 12(3), 1622-1632. https://doi.org/10.1007/s11694-018-9777-5
  39. Rehman, A., Ahmad, T., Aadil, R.M., Spotti, M.J., Bakry, AM., Khan, I.M., & Tong, Q. (2019). Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.05.015
  40. Rostamabadi, H., Falsafi, S.R., & Jafari, S.M. (2019). Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2019.02.005
  41. Saadat, S., Movahhed, S., & Ahmadi Chenarbon, H. (2019). Effect of guar and arabic gums on qualitative properties of extruded rice. Journal of Food Process Engineering, 42(2), e12959. https://doi.org/10.1111/jfpe.12959
  42. Semenova, M. (2017). Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid & Interface Science, 28, 15-21. https://doi.org/10.1016/j.cocis.2016.12.003
  43. Seo, Y., Moon, Y., & Kweon, M. (2021). Effect of purple-colored wheat bran addition on quality and antioxidant property of bread and optimization of bread-making conditions. Applied Sciences, 11(9), 4034. https://doi.org/10.3390/app11094034
  44. Shao, Z., Han, J., Wang, J., Sun, Y., Li, X., & Liang, J. (2021). Process optimization, digestibility and antioxidant activity of extruded rice with Agaricus bisporus. LWT, 152, 112350. https://doi.org/10.1016/j.lwt.2021.112350
  45. Sumardiono, S., Kusumayanti, H., Prakoso, N.I.A., Paundrianagari, F.P., & Cahyono, H. (2021). Influence of composite flour constituents and extrusion temperature in the production of analog rice. Food Sci Nutr, 9(8), 4385-4393. https://doi.org/10.1002/fsn3.2411
  46. Sun, Z., Lyu, Q., Zhuang, K., Chen, L., Wang, G., Wang, Y., & Ding, W. (2023). Impact of different preparation methods on the properties of brown rice flour and the cooking stability of brown rice noodles and the underlying mechanism: Microstructure, starch-protein distribution, moisture migration. LWT, 181, 114697. https://doi.org/10.1016/j.lwt.2023.114697
  47. Taheri, A., & Jafari, S.M. (2019). Nanostructures of gums for encapsulation of food ingredients. In Biopolymer Nanostructures for Food Encapsulation Purposes (pp. 521-578): Elsevier. https://doi.org/10.1016/B978-0-12-815663-6.00018-5
  48. Tangjaidee, P., Xiang, J., Yin, H., Wen, X., & Quek, S.Y. (2019). Selenium, fibre, and protein enrichment of rice product: extrusion variables and product properties. Food quality and Safety, 3(1), 40-51. https://doi.org/10.1093/fqsafe/fyy028
  49. Torres, O.L., Lema, M., & Galeano, Y.V. (2021). Effect of using quinoa flour (Chenopodium quinoa ) on the physicochemical characteristics of an extruded pasta. International Journal of Food Science, 2021(1), 8813354. https://doi.org/10.1155/2021/8813354
  50. Wang, X., Zeng, M., Yu, Y.-H., Wang, H., Mannan, M.S., & Cheng, Z. (2017). Thermosensitive ZrP-PNIPAM Pickering emulsifier and the controlled-release behavior. ACS Applied Materials & Interfaces, 9(8), 7852-7858. https://doi.org/10.1021/acsami.6b16690
  51. Wang, Y.-R., Yang, Q., Li-Sha, Y.-J., & Chen, H.-Q. (2021). Structural, gelation properties and microstructure of rice glutelin/sugar beet pectin composite gels: Effects of ionic strengths. Food Chemistry, 346, 128956. https://doi.org/10.1016/j.foodchem.2020.128956
  52. Waterhouse, G.I., & Sun-Waterhouse, D. (2019). Encapsulation systems containing multi-nutrients/bioactives: From molecular scale to industrial scale. https://doi.org/10.1016/B978-0-08-100596-5.21511-4
  53. Wei, Y., Wang, C., Liu, X., Mackie, A., Zhang, M., Dai, L., & Gao, Y. (2022). Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids, 122, 107064. https://doi.org/10.1016/j.foodhyd.2021.107064
  54. Xia, W., Lin, Y., Wang, F., Liu, Y., & Liu, R.H. (2024). Preparation and physicochemical properties: a new extruded rice using cassava starch and broken rice flour. Frontiers in Sustainable Food Systems, 8, 1383012. https://doi.org/10.3389/fsufs.2024.1383012
  55. Xiong, G., Jia, L., Luo, L., Ding, Y., Lin, Q., & Liu, C. (2023). Improvement in texture and cooking quality of black rice (Oryza sativa ) using different pretreatments. Journal of Cereal Science, 109, 103611. https://doi.org/10.1016/j.jcs.2022.103611
  56. Yan, M., & Jiang, S. (2023). Recent trends in functional characteristics and degradation methods of alginate. In BIO Web of Conferences (Vol. 61, p. 01015). EDP Sciences. https://doi.org/10.1051/bioconf/20236101015
  57. Zhang, H., Tan, S., Gan, H., Zhang, H., Xia, N., Jiang, L., & Zhang, X. (2023). Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Food Chemistry, 400, 134032. https://doi.org/10.1016/j.foodchem.2022.134032
  58. Zhang, Y., Qin, Y., Liang, Q., Hu, Y., & Luan, G. (2023). Breaking the temperature limitation of zein-rice starch dough by microwave pre-gelatinization: Morphological, structural and rheological properties of the dough. Food Research International, 173, 113465. https://doi.org/10.1016/j.foodres.2023.113465
  59. Zhao, Y., Dang, X., Du, H., Wang, D., Zhang, J., Liu, R., & Zhong, Q. (2024). Understanding the impact of extrusion treatment on cereals: Insights from alterations in starch physicochemical properties and in vitro digestion kinetics. Animals, 14(21), 3144. https://doi.org/10.3390/ani14213144
  60. Zheng, Y., Tian, J., Ogawa, Y., Kong, X., Chen, S., Liu, D., & Ye, X. (2020). Physicochemical properties and in vitro digestion of extruded rice with grape seed proanthocyanidins. Journal of Cereal Science, 95, 103064. https://doi.org/10.1016/j.jcs.2020.103064
  61. Zhu, F. (2019). Starch based Pickering emulsions: Fabrication, properties, and applications. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.01.012
CAPTCHA Image