با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانوتکنولوژی مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

2 گروه فارماسیوتیکس دانشکده داروسازی مشهد، مشهد، ایران

چکیده

مطالعه حاضر به ارزیابی پایداری و خواص فیزیکوشیمیایی نیوزوم‌های حاوی کروسین و امگا3 پرداخته است. کروسین و امگا3 در وزیکل‌های نیوزومی مبتنی بر اسپن ۶۰ و توئین ۶۰ با استفاده از روش‌های حرارتی و حباب درون پوشانی شدند. سپس خواص فیزیکوشیمیایی، پایداری و رفتار رهایش ترکیبات حاصل ارزیابی گردید. فرآیند بهینه‌سازی بر اساس بازدهی درون پوشانی (EE)، اندازه وزیکل، پتانسیل زتا و شاخص بس پاشیدگی (PDI) انجام شد. در فرمولاسیون بهینه، بازدهی درون پوشانی کروسین و امگا۳ در روش حرارتی به‌ترتیب 76% و 32% با اندازه ذرات 129 نانومتر و در روش حباب به‌ترتیب 73% و 28% با اندازه ذرات 131 نانومتر بود. پتانسیل زتا برای روش حرارتی و حباب به‌ترتیب 39- و 45- بود. میکروسکوپ الکترونی عبوری (TEM) نشان داد که نیوزوم‌ها دارای ساختار کروی و وزیکلی هستند. همچنین الگوی رهایش و پایداری نیوزوم‌های بارگذاری شده در دماهای 4، 25 و 37 درجه سانتی‌گراد مورد بررسی قرار گرفت. نتایج پژوهش نشان داد که نانوسامانه‌های نیوزومی حاوی کروسین و امگا3 سبب افزایش پایداری و رهایش تدریجی و کنترل شده آن‌ها می‌شود. مقایسه روش حباب و حرارتی نشان داد که نیوزوم‌های تهیه شده به روش حرارتی پارامترهای فیزیکوشیمیایی مناسب‌تری را ایجاد کرده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation and Evaluation of Dually Loaded Niosomes Containing Crocin and Omega-3 by Heating & Bubble Method

نویسندگان [English]

  • Parisa Mardani 1
  • Ghadir Rajabzadeh 1
  • Bijan Malaekeh-Nikouei 2
  • Aram Bostan 1

1 Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

2 Pharmaceutical Technology Institue, Mashhad University of Medical Science, Mashhad, Iran

چکیده [English]

Introduction
The majority of pharmaceuticals and nutraceuticals are encapsulated in various delivery vehicles in order to avoid some restrictions. This is mainly due to the molecules' physicochemical instability in physiological structure and/or their low bioavailability. Food ingredients or bioactive components can be encapsulated inside delivery systems for protection and controlled release. Encapsulated ingredients are protected from unfavorable reactions, such as lipid oxidation and volatile loss during production, storage, and handling.
Materials and Methods
Flaxseed oil was purchased from Barij Essence Pharmaceutical Co., Tehran, Iran. Saffron was bought from Novin Saffron Co., Mashhad, Iran. Cholesterol, span 60 and tween 60 were from Sigma-Aldrich. Phosphate buffered saline, sodium azide, hydrochloric acid, and other chemicals were procured from Merck (Darmstadt, Germany). All other solvents and reagents were provided from Merck Pharmaceutical Co. (Germany) as analyticall grade.
Crocin Extraction
The extraction of crocin from saffron was done based on crystallization method which has been explained by Mohajeri et.al.
Flaxseed Oil Extraction
Flaxseed is one of the richest plant sources of ω-3 fatty acids, alpha-linolenic acid (ALA, C18:3 ω-3). A Soxhlet extraction was carried out on flaxseed powder (20g) using n-hexane for 14 hours at 70°C. After extraction, the sample was concentrated in a rotary evaporator at 40°C .
Niosome Preparation
A surfactant with a HLB number between 3 - 8 is suitable for the co-encapsulation of hydrophobic and hydrophilic substances (Korani et al. 2019. Hence, span 60: tween 60 variable ratios were selected to achieve HLB in this range. Additionally, the ratio of surfactants to Chol was considered variable. The DCP was applied at a constant concentration to enhance noisome stability.
Results and Discussion
Characterization of niosomes
The influence of experimental variables on the particle size, PDI and zeta potential of niosomes prepared by heating and bubble methods was investigated. In order to choose the appropriate ratios of surfactant, the physicochemical characteristics of niosomal particles, including particle size, zeta potential, PdI, and EE have been considered.
Tween 60 is a nonionic surfactant with a large hydrophilic head group and high HLB (14.9). In turn, span 60 has a large hydrophobic moiety (HLB 4.7) and low water solubility. The smaller head groups and longer alkyl chains in surfactant structure have led to larger vesicles. This might be the reason for the larger particle size of H1-H3 and B1-B3, containing higher amount of span 60 compared to other samples.
   The PDI of the prepared samples was found in the range of 0.29 to 0.49. This value was considered to be within the range of sufficient for attaining stable and aggregation resistant systems. However, higher span 60 content showed comparatively a lesser degree of PDI.
   Zeta potential is a respectable index of the quantity of the interaction between colloidal particles. In this work, the prepared niosomes had a zeta potential range of -31 to -48 mV, which was sufficient to maintain niosome stability without aggregation between vesicles. Negative zeta-potential in nonionic surfactant vesicles has been reported.
   Based on the results, B12 and H12 samples with the span: tween ratio of 4:1 and surfactant: Chol ratio of 1:1 formed better niosomes based on particle size, PDI, EE, and zeta potential.
In the optimum conditions, the EE of crocin and ω-3 in heating method were 76% and 32%, and in bubble method they were 73% and 28%, respectively.
Stability of niosomes
The stability of the optimum niosomes prepared by bubble and heating methods were evaluated at 4°±2°C, 25±2°C, and 37°±2°C for 90 days, by means of stability in size, PDI, and EE.             
 Conclusion
 In conclusion, this study revealed that co-encapsulation of omega3 and crocin with niosome led to better stability, slower and more controlled release profile, suggesting a promising drug delivery system.

کلیدواژه‌ها [English]

  • Bubble method
  • Crocin
  • Heating method
  • Niosome
  • Omega-3

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT, 84, 471–478. https://doi.org/10.1016/j.lwt.2017.06.009
  2. Bathaie, S.Z., Farajzade, A., & Hoshyar, R. (2014). A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains. Biotechnology Histochemicaly, 89, 401–411. https://doi.org/10.3109/10520295. 2014.890741
  3. Bazana, M. T., Codevilla, C. F., & de Menezes, C. R. (2019). Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr Opin Food Sci., 26, 47–56. https://doi.org/10.1016/j.cofs.2019.03.005
  4. Chen, F., Liang, L., Zhang, Z., Deng, Z., Decker, A.E., & McClements, D.J. (2017). Inhibition of lipid oxidation in nanoemulsions and filled microgels strengthened with omega-3 fatty acids using casein as a Natural Antioxidant. Journal Food Hydrology, 63, 240–248. https://doi.org/ 10.1016/j.foodhyd.2016.09.001
  5. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., & Dokhani, A. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10, 57. https://doi.org/10.3390/pharmaceutics10020057
  6. Das, A., Ringu, T., Ghosh, S., & Pramanik, N. (2023). A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin, 80, 7247-7312. https://doi.org/10.1007/s00289-022-04443-4
  7. Durak, S., Esmaeili Rad, M., Alp Yetisgin, A., Eda Sutova, H., Kutlu, O., Cetinel, S., & Zarrabi, A. (2020). Niosomal drug delivery systems for ocular disease—recent advances and future prospects. Nanomaterials, 10, 1191. https://doi.org/10.3390/nano10061191
  8. Eratte, D., Wang, B., Dowling, K., Barrow, C.J., & Adhikari, B.P. (2014). Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Function, 5, 2743–2750. https://doi.org/10.1039/C4FO00296B
  9. Farzaneh, H., Ebrahimi Nik, M., Mashreghi, M., Saberi, Z., Jaafari, M.R., & Teymouri, M. (2018). A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. International Journal Pharmacological, 551, 300–8. https://doi.org/10.1016/j.ijpharm.2018.09.047
  10. Finley, J.W., & Gao, S. (2017). A perspective on Crocus sativus(Saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. Journal Agriculture Food Chemistry, 65, 1005–1020. https://doi.org/10.1021/acs.jafc.6b04398
  11. Gaafar, M.R., Mady, R.F., Diab, R.G., & Shalaby, T.I. (2014). Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Experimental Parasitology, 143, 30–38. https://doi.org/10.1016/j.exppara.2014.05.005
  12. Ghasemiyeh, P., & Mohammadi-Samani, S. (2019). Hydrogels as drug delivery systems; pros and cons. Trends in Pharmaceutical Sciences, 5, 7–24. https://doi.org/10.30476/TIPS.2019.81604.1002
  13. Hasibi, F., Nasirpour, A., Varshosaz, J., GarcíaManrique, P., Blanco -López, M.C., Gutiérrez, G., & Matos, M. (2020). Formulation and characterization of Taxifolin - loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification. European Journal of Lipid Science and Technology, 122(2), 1900105.
  14. Horwitz, W. (2004). Offcial methods of analysis of AOAC International, 17thed., Gaithersburg, Maryland.
  15. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., & He, S. (2021). New data content and improved web interfaces. Nucleic Acids Res. PubChem in 2021: 49 (D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  16. Khazaeli, P., Pardakhty, A., Shoorabi, H. (2007). Caffeine-Loaded Niosomes: Characterization and in Vitro Release Studies. Journal of Drug Delivery Science and Technology, 14, 447–452. https://doi.org/10.1080/10717540701603597
  17. Korani, M., Ghaffari, S., Attar, H., Mashreghi, M., & Jaafari, M.R. (2019). Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine Nanotechnology, Biology and Medicine. https://doi.org/10.1016/j.nano.2019.04.016.
  18. Liang, R., Chen, L., Yokoyama, W., Williams, P.A., & Zhong, F.(2016). Niosomes consisting of tween-60 and cholesterol improve the chemical stability and antioxidant activity of (−)-epigallocatechin gallate under intestinal tract conditions. Journal of Agricultural and Food Chemistry, 64, 9180–8. https://doi.org/10.1021/acs.jafc.6b04147.s001
  19. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release–a review. International Journal Food Science Technology, 41, 1-21.  https://doi.org/10.1111/j.1365-2621.2005.00980.x
  20. Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal Control Release, 185, 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015
  21. Mashreghi, M., Karimi, M., Gheybi, F., Zamani, P., Golmohammadzadeh, S., & Darban, S.A. (2020). Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. International Journal of Pharmaceutics, 580, 119211. https://doi.org/10.1016/j.ijpharm.2020.119211
  22. Mohajeri, S.A., Hosseinzadeh, H., Keyhanfar, F., & Aghamohammadian, J. (2010). Extraction of crocin from saffron (Crocus sativus) using molecularly imprinted polymer solid‐phase extraction. Journal of Separation Science, 33, 2302–2309. https://doi.org/10.1002/jssc.201000183
  23. Momekova, D.B., Gugleva, V.E., & Petrov, P.D. (2021). Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega., 6, 33265–33273. https://doi.org/10.1021/acsomega.1c05083
  24. Mozafari, M.R, Reed, C.J., Rostron, C., Kocum, C., & Piskin, E. (2002). Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cellular & Molecular Biology Letters, 7, 923–8.
  25. Naderi, R., Pardakhty, A., Abbasi, M.F., Ranjbar, M., & Iranpour, M. (2021). Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney. Scientific Reports, 11, https://doi.org/10.1038/s41598-021-02073-w
  26. Nandhakumar, S., Dhanaraju, M.D., Sundar, V.D., Heera, B. (2017). Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly (ε-caprolactone) nanoparticles. Bulletin of Faculty of Pharmacy Cairo University, 55, 249–58. https://doi.org/ 10.1016/j.bfopcu.2017.06.003
  27. Parizi, M.H., Sharifi, I., Farajzadeh, S.P., Audacity, A., Parizi, M.H.D., Sharifi, H., Keyhani, A.R., Mostafavi, M., Bamorovat, M., Khosravi, A., & Ghaffari, D. (2019). Tioxolone niosomes exert antileishmanial effects on leishmania tropica by promoting promastigote apoptosis and immunomodulation. Asian Pacific Journal of Tropical Medicine, 12, 365-374. https://doi.org/10.4103/1995-7645.262566
  28. Pamunuwa, G., Karunaratne, V., & Karunaratne, D.(2016) Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. Journal Nanomater, https://doi.org/10.101610.1155/2016/4535790
  29. Rezvani, M., Hesari, J., Peighambardoust, S.H., Manconi, M., Hamishehkar, H., & Escribano -Ferrer, E. (2019). Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine -Proline -Proline: A comparative study with central composite design approach. Food Chemistry, 293, 368-377. https://doi.org/10.1016/j.foodchem.2019.05.015
  30. Saleh, A., Pirouzifard, M., & Almasi, H. (2022). Optimization and characterization of Lippia citriodora essential oil loaded niosomes: A novel plant-based food nano preservative. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 650, 129480. https://doi.org/10.1016/j.colsurfa.2022.129480
  31. Shilakari Asthana, G., Sharma, P.K., & Asthana, A. (2016). In vitro and in vivo evaluation of niosomal formulation for controlled delivery of clarithromycin. https://doi.org/10.1155/2016/6492953
  32. Tewabe, A., Abate, A., Tamrie, M., Seyfu, A., & Abdela Siraj, E. (2021). Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. Journal of Multidisciplinary Healthcare, 1711-1724. https://doi.org/10.2147/JMDH.S313968
  33. Vignolini, P., Heimler, D., Pinelli, P., Ieri, F., Sciullo, A., & Romani, A. (2008). Characterization of by-products of saffron (Crocus sativus) production. Natural Product Communications, 3, 1934578X0800301203. https://doi.org/10.1177/1934578X0800301203
  34. Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y., & Kataoka, K. (2001). Long-circulating poly (ethylene glycol)–poly (d, l-lactide) block copolymer micelles with modulated surface charge. Journal Control Release, 77, 27–38. https://doi.org/10.1016/s0168-3659(01)00451-5
  35. Yeo, P.L., Lim, C.L., Chye, S.M., Ling, APK., & Koh, R.Y. (2017). Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomedicine, 11, 301–14. https://doi.org/10.1515/abm-2018-0002
CAPTCHA Image