با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

امروزه در بخش کشاورزی تولید محصولات ناسالم باعث استفاده از ﭘﻮﺷﺶ­ﻫﺎی طبیعی ﺟﻬﺖ ﺟﻠﻮﮔﯿﺮی از ﺗﻐﯿﯿﺮات ﻧﺎﻣﻄﻠﻮب ﮐﯿﻔﯽ و افزایش ماندگاری پس از برداشت ﻣﺤﺼﻮﻻت ﻣﺨﺘﻠﻒ شده است. از این رو پژوهش حاضر با هدف بررسی اثر پوشش‌­های طبیعی مبتنی بر نانوکیتوزان و نانوهیدروکسی آپاتیت بر افزایش ماندگاری قارچ دکمه‌­ای انجام شد. بدین منظور اثر این ﭘﻮﺷﺶ­ها در آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار ﺟﻬﺖ ﺟﻠﻮﮔﯿﺮی از ﺗﻐﯿﯿﺮات ﻧﺎﻣﻄﻠﻮب بر روی ﮐﯿﻔیت قارچ دکمه‌­ای ارزیابی شد. فاکتورهای آزمایش شامل سطوح پوشش‌­دهی قارچ دکمه‌­ای با غلظت­‌های مختلف نانوکیتوزان (صفر، 1 و 2 درصد) و نانوهیدروکسی آپاتیت (0، 40 و 80 میلی‌گرم) به‌مدت 28 روز بود. بعد از پوشش‌­دهی صفات فنل کل، فلاونوئید، ظرفیت آنتی‌‌اکسیدانی، پروتئین کل، محتوای اسید آسکوربیک و نشت الکترولیت قارچ‌­ها طی 28 روز نگه­داری یادداشت‌برداری و مورد تجزیه و تحلیل قرار گرفتند. نتایج نشان داد که در پوشش نانوکیتوزان یک درصد حاوی نانوهیدروکسی آپاتیت 40 میلی‌گرم بیش­ترین میزان فنل کل، فلاونوئید، ظرفیت آنتی­‌اکسیدانی، محتوای اسید اسکوربیک، پروتئین کل و کم­ترین میزان نشت الکترولیت در طی 28 روز ذخیره‌سازی نسبت به تیمار شاهد حاصل شد. در تیمار شاهد (بدون پوشش) کم­ترین میزان فنل کل، فلاونوئید، ظرفیت آنتی­‌اکسیدانی، محتوای اسید اسکوربیک، پروتئین کل و بیش­ترین میزان نشت الکترولیت در طی 28 روز ذخیره­‌سازی حاصل شد. در نهایت با توجه به یافته‌­های این مطالعه می­‌توان چنین اظهار نمود که پوشش‌­دهی با نانوکیتوزان یک درصد حاوی نانوهیدروکسی آپاتیت 40 میلی­‌گرم می‌تواند ماندگاری پس از برداشت قارچ دکمه‌­ای را تا 14 روز افزایش دهد که قابلیت بازارپسندی را دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Effect of Natural Coating of Chitosan Nanoparticles and Nanohydroxyapatite on the Physiological Characteristics and Shelf Life of Button Mushroom (Agaricus bisporus)

نویسندگان [English]

  • Zahra Ziaei Ghahnavieh 1
  • Mohammad Reza Raji 1
  • Abdollah Ehteshamnia 1
  • Seyed Sajad Sohrabi 2

1 Department of Horticultural Science Engineering, Lorestan University, Khorramabad, Iran

2 Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Introduction
Excessive human exposure  to chemicals in agricultural practices  contribute to the production of unhealthy and environmentally destructive products. For this reason, natural coatings are used to prevent adverse changes in the quality of various products. Natural coatings can be a barrier on the outer surface of food to prevent the loss of aromatic compounds, and moisture content and provide the possibility of selective natural exchange of some gases and increase shelf life post harvest. Considering the economic importance of button mushrooms and the need to provide optimal solutions to increase shelf life post harvest, the present study was conducted  to investigate the effect of natural coatings based on chitosan nanoparticles and nanohydroxyapatite on increasing the shelf life of button mushrooms.
Materials and Methods
For this purpose, the effect of these coatings was evaluated in a factorial experiment in the form of a completely randomized design with three repetitions to prevent adverse changes in button mushroom quality. Button mushrooms were covered with different concentrations of chitosan nanoparticles (zero, 1% and 2%) and nanohydroxyapatite (0, 40, 80 mg) for 28 days. The mushrooms that were prepared for coating were divided into 9 groups. One sample without coating and 8 samples were coated with different percentages of chitosan nanoparticles and nanohydroxyapatite and coded.  All mushroom sampless were immersed in each of the coating solutions for five minutes. The mushrooms were then taken out of the solutions and placed on the mesh basket (at room temperature) for 15 to 30 minutes so that the additional amount of coating material drips. Then the mushrooms were weighed individually and six numbers were transferred in three replicates in single-use plastic containers with perforated lids. Then they were transferred to the refrigerator. The control sample was immersed in distilled water for 5 minutes instead. The data was measured on days 0, 7, 14, 21 and 28. After coating, the characteristics of total phenol, flavonoid, antioxidant capacity, total protein, ascorbic acid content, and electrolyte leakage of mushrooms were recorded and analyzed during 28 days of storage.
Results and Discussion
Based on the results, the highest amount of total phenol, flavonoid, antioxidant capacity, ascorbic acid content, total protein, and the lowest amount of electrolyte leakage were obtained in 1% nano chitosan coating containing 40 mg of nanohydroxyapatite during 28 days of storage. In the control treatment (without coating), the lowest amount of total phenol, flavonoid, antioxidant capacity, ascorbic acid content, total protein, and the highest amount of electrolyte leakage were obtained during 28 days of storage.
Conclusion
Due to the high perishability of button mushroom, its maintenance is very important. Coating is considered as one of the methods of keeping quality of button mushrooms. The purpose of this study was to evaluate the effect of natural coating based on chitosan nanoparticles and nanohydroxyapatite on the total phenolic, flavonoid, antioxidant capacity, ascorbic acid content, electrolyte leakage, and total protein of mushrooms on zero, 7, 14, 21, and 28 day, in order to maintain quality and increase the shelf life of button mushroom. For this purpose, the coating of chitosan nanoparticles (zero, 1%, 2%), nanohydroxyapatite (zero, 40, 80 mg), and the combination of chitosan nanoparticles with nanohydroxyapatite in the mentioned concentrations were used. Finally, according to the findings of this study, it can be stated that coating with 1% nano chitosan containing 40 mg of nanohydroxyapatite can increase the shelf life of button mushroom up to 14 days post harvest, with increased marketability.

کلیدواژه‌ها [English]

  • Edible coating
  • Edible mushrooms
  • Nanochitosan
  • Nanohydroxyapatite
  • Post-harvest life

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abbasifar, A., Shahrabadi, F., & ValizadehKaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal Plant Nutrient, 43(8), 1104–1118. https://doi.org/10.1080/01904167.2020.1724305
  2. Bakhshi, D., & Arakawa, O. (2006). Effect of UV-B irradiation on phenolic compounds accumulation and their antioxidant activity in ‘Jonathan’ apple. Food, Agriculture and Environment, 4(1), 75-79. https://www.researchgate.net/publication/289689317
  3. Benzie,, & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochemistry, 239(1),70-76. https://doi.org/10.1006/abio.1996.0292
  4. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio. 1976.9999
  5. Camargo, J., & Dunoyer, A. (2016). The effect of storage temperature and time on total phenolics and enzymatic activity of sapodilla (Achras sapota L.). Revista Facultad Nacional de Agronomía Medellín69(2), 7955–7963. https://doi.org/10.15446/rfna.v69n2.59140
  6. Chang, H.L., Chen, Y.C., & Tan, F.J. (2011). Antioxidative properties of a chitosan–glucose maillard reaction product and its effect on pork qualities during refrigerated storage. Food Chemistry, 124(2), 589–595. https://doi.org/10.1016/j.foodchem.2010.06.080
  7. Dokhanieh, A.Y., & Aghdam, M.S. (2016). Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Science Horticulture, 207(2), 146–151. https://doi.org/10.1016/j.scienta.2016.05.025
  8. Eswaran, M., Swamiappan, S., Chokkiah, B., Dhanusuraman, R., Bharathkumar, S., & Ponnusamy, V.K. (2021). A green and economical approach to derive nanostructured hydroxyapatite from Garra mullya fish scale waste for biocompatible energy storage applications. Materials Letters, 302(20), 1.130341. https://doi.org/10.1016/j.matlet. 2021.130341
  9. Fattahifar, E., Barzegar, M., Ahmadi Gavlighi, H., & Sahari, M.A. (2018). Evaluation of the inhibitory effect of pistachio (Pistacia vera ) green hull aqueous extract on mushroom tyrosinase activity and its application as a button mushroom postharvest anti-browning agent. Postharvest Biology and Technology, 145(1), 157-165. https://doi.org/10.1016/j.postharvbio.2018.07.005
  10. Genady, E.A., Qaid, E.A., & Fahmy, A.H. (2016). Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida stimulating growth and total phenolic content increasments. International Journal Pharmaceutically Research Allied Science, 5(1), 196–202.
  11. Gharejelo, A., Ganjeh, M., & Ghaderi, S. (2020). Evaluation of extending the shelf life of button mushroom (Agaricus Bisporous) using chitosan and Ferulago angulate essential oil. Food Science, 21(154), 1-88. http://fsct.modares.ac.ir/article-7-73195-en.html
  12. Hamzeh-kalkenari, S., Bodaghi, H., & Ghasimi Hagh, Z. (2020). Improving postharvest quality of button mushroom (Agaricus bisporus) using polyethylene-clay nanocomposite packing and Echinophora cinerea essential oil coating. Iranian Food Science and Technology Research Journal, 17(2), 315-328.
  13. Homaee, M.B., & Ehsanpour, A.A. (2016). Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum ) grown in vitro, Horticult. Environment Biotechnology, 57(6), 544–553. https://doi.org/10.1007/s13580-016-0083-z
  14. Huang, R., Mao, P., Xiong, L., Qin, G., Zhou, J., Zhang, J., Li, Z., & Wu, J. (2023). Negatively charged nano-hydroxyapatite can be used as a phosphorus fertilizer to increase the efficacy of wollastonite for soil cadmium immobilization. Journal of Hazardous Materials, 5(443), 1-6. https://doi.org/10./j.jhazmat.2022.130291
  15. Hu Hu, Y., Zhou, Y., Liu, J.A., Wang, Q., Cheng Lin, J., & Shi, Y. (2020). Effect of 4-methoxycinnamic acid on the postharvest browning of mushrooms (Agaricus bisporus). Journal Food Process Preservation, 44(1), 1-10. https://doi.org/10.1111/jfpp.14735
  16. Khaliq, G.H., Mohamed, M.T.M., Ali, A., Ding, P., & Ghazalic, H.M. (2015). Effect of gum Arabic coating combined with calcium chloride on physicochemical and qualitative properties of mango (Mangiferaindica ) fruit during low temperature storage. Scientia Horticulturae, 190(6), 187–194. https://doi.org/10.1016/j.scienta. 2015.04.020
  17. Khosravi, S., Haghighi, M., & Mehnatkesh, M. (2022). The effect of vitamin C and B treatments on button mushroom yield and postharvest life. Journal of Horticultural Science, Research Article, 36(1), 43-56.
  18. Karimirad, R., Behnamian, M., & Dezhsetan, S. (2019). Application of chitosan nanoparticle scontaining Cuminum cyminum oil asa deli very system for shelfl ifeextension of Agaricus bisporus. LWT-Food Science and Technology, 106(4), 218-228. https://doi.org/1016/j.lwt.2019.02.062
  19. Karimirad, R., Behnamian, M., & Dezhsetan, S. (2020). Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocolloids, 100(1), 105387. https://doi.org/10.1016/j.foodhyd.2019.105387
  20. Landa, P., Müller, K., Přerostová, S., Petrová, S., Moťková, K., Vaněk, T., & Soudek, P. (2024). Effect of nano-hydroxyapatite and phosphate on thorium toxicity – Arabidopsis transcriptomic Environmental and Experimental Botany, 217(1), 105573. https://doi.org/10.1016/j.envexpbot.2023.105573
  21. Liu, J., Liu, S., Zhang, X., Kan, J., & Jin., C. (2019). Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 147(1), 39-47. https://doi.org/10.1016/j.postharvbio.2018.09.004
  22. Louis, E., Villalobos-Carvajal, R., Reyes-Parra, J., Jara-Quijada, E., Ruiz, C., Andrades, P., Gacitúa, J., & Beldarraín-Iznaga, T. (2021). Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packaging and Shelf Life, 28(1), 1-10. https://doi.org/10.1016/j.fpsl.2021.100662
  23. Nasiri, M., Barzegar, M., Sahari, M.A., & Niakousari, M. (2017). Tragacanth gum containing Zataria multiflora Boiss essential oil as a natural preservative for storage of button mushrooms (Agaricus bisporus). Food Hydrocolloids, 72(3), 202–209. https://doi.org/10.1016/j.foodhyd.2017.05.045
  24. Paula, C., Carole, F., Shiv, S., Stephane, S., & Monique, L. (2021). Influence of cellulose nanocrystals gellan gum-based coating on color and respiration rate of Agaricus bisporus Journal of Food Science, 86(2), 420-425. https://doi.org/10.1111/1750-3841.15580
  25. Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nanoencapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91(2), 185-192. https://doi.org/10.1016/j.foodcont.2018.03.047
  26. Priyam, A., Yadav, N., Reddy, P.M., Afonso, L.O.B., Schultz, A.G., & Singh, P.P. (2022). Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH. Heliyon, 8(1), e09144. https://doi.org/10.1016/j.heliyon.2022.e09144
  27. Qian, X., Hou, Q., Liu, J., Huang, Q., Jin, Z., Zhou, Q., Jiang, T., & Zheng, X. (2021). Inhibition of browning and shelf life extension of button mushroom (Agaricus bisporus) by ergothioneine treatment. Scientia Horticulturae, 288(2), 1-8. https://doi.org/10.1016/j.scienta.2021.110385
  28. Rokayya, S., Ebtihal, K., Abeer, E., Nada, B., Murthy, C., Kambhampati, V., Abdullah, I., & Mahmoud, H. (2021). Investigating the nano-films effect on physical, mechanical properties, chemical changes, and microbial load contamination of white button mushrooms during storage. Coatings, 11(1), 2-12 https://doi.org/10.3390/coatings11010044
  29. Shao, P., Yu, J., Chen, H., & Gao, H. (2021). Development of microcapsule bioactive paper loaded with cinnamon essential oil to improve the quality of edible fungi. Food Packaging and Shelf Life, 27(2), 1-9. https://doi.org/10.1016/j.fpsl.2020.100617
  30. Sharifianjazi, F., Esmaeilkhanian, A., Moradi, M., Pakseresht, A., Shahedi Asl, M., Won Jang, H., & Varma, R.S. (2021). Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Materials Science and Engineering:B, 264(1), 114950. https://doi.org/10.1016/j.mseb.2020.114950
  31. Sairam, R.K., Dharmar, K., Chinnusamy, V., & Meena, R. (2002). Waterlogging induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mungbean (Vigna radiata). Journal Plant Physiology, 166(1), 602-616. https://doi.org/1016/j.jplph.2008.09.005
  32. Victor Aberea, D., Sammy A. Ojob, Oyatogunc, G.M., Belen Paredes-Epinosaa, M., Carmalita Dharsika Niluxsshuna, M., & Hakamid, A. (2022). Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: A mini review. Biomedical Engineering Advances, 4(1), 100056. https://doi.org/1016/j.bea.2022.100056
  33. Zhang, L., Liu, Z., Wang, X., Dong, S., Sun, Y., & Zhao, Z. (2019). The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Journal Postharvest Biology and Technology, 155(1), 47-56. https://doi.org/10.1016/j.postharvbio.2019.05.013
CAPTCHA Image