با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

دانشکده کشاورزی،دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

این مقاله به بررسی خواص آنتی‌اکسیدانی و ضدمیکروبی فیلم‌های خوراکی زیست‌تخریب‌پذیر دارای امولسیون‌های پیکرینگ حاوی اسانس می‌پردازد. امروزه، فیلم‌های خوراکی زیست‌تخریب‌پذیر که امولسیون‌های پیکرینگ حاوی اسانس را در خود جای داده‌اند، به‌طور فزاینده‌ای به‌عنوان گزینه‌ای امیدبخش برای بسته‌بندی پایدار مواد غذایی شناخته می‌شوند. افزودن اسانس به ماتریس امولسیون، عملکرد آنتی‌اکسیدانی و ضدمیکروبی این فیلم‌ها را به‌طور قابل‌توجهی افزایش می‌دهد. بر این اساس، ویژگی‌های کلیدی مورد بحث در این مرور شامل فعالیت آنتی‌اکسیدانی، اثربخشی ضدمیکروبی و نقش این فیلم‌ها در افزایش ماندگاری محصولات غذایی است. نتایج نشان داده‌اند که افزودن امولسیون‌های پیکرینگ حاوی اسانس، ظرفیت آنتی‌اکسیدانی فیلم‌ها را به‌طور قابل توجه‌ای افزایش داده و موجب کاهش محسوس در تخریب اکسیداتیو مواد غذایی شده است. علاوه بر این، این فیلم‌ها فعالیت ضدمیکروبی مؤثری در برابر عوامل بیماری‌زای مختلف غذایی مانند اشریشیا کلی و استافیلوکوکوس اورئوس از خود نشان داده‌اند که این عملکرد به خواص زیست‌فعال اسانس‌های افزوده‌شده نسبت داده می‌شود. این فیلم‌ها با مهار مؤثر رشد میکروبی، به بهبود ایمنی مواد غذایی کمک مستقیم می‌کنند. این یافته‌ها، پتانسیل بالای فیلم‌های زیست‌تخریب‌پذیر حاوی امولسیون‌های پیکرینگ را به‌عنوان راهکاری پایدار برای بسته‌بندی مواد غذایی با خواص آنتی‌اکسیدانی و ضدمیکروبی تأکید می‌کنند که به افزایش ماندگاری و ایمنی بیشتر محصولات غذایی بسته‌بندی‌شده منجر می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Edible Biodegradable Films Incorporating Essential Oil-based Pickering Emulsions: A Review of Antioxidant and Antimicrobial Properties

نویسندگان [English]

  • Hossein Mirzaei-moghaddam
  • Arian Nahalkar
  • Ahmad Rajaei

School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran

چکیده [English]

This article reviews the antioxidant and antimicrobial properties of biodegradable edible films based on Pickering emulsions containing essential oils. Edible biodegradable films incorporating essential oil-loaded Pickering emulsions are increasingly recognized as a promising option for sustainable food packaging. By incorporating essential oils into the emulsion matrix, the antioxidant and antimicrobial properties of these films significantly improved. Therefore, the key properties discussed in this review include antioxidant activity, antimicrobial effectiveness, and the role of these films in extending the shelf life of food products. The results showed that the incorporation of Pickering emulsions containing essential oils significantly increased the antioxidant capacity of the films, leading to a notable reduction in oxidative degradation of food. Additionally, these films exhibited effective antimicrobial activity against various foodborne pathogens such as Escherichia coli and Staphylococcus aureus, which is attributed to the bioactive properties of the incorporated essential oils. The films effectively inhibited microbial growth, directly contributing to enhanced food safety. The findings highlight the great potential of Pickering emulsion-based biodegradable films as a sustainable solution for food packaging with antioxidant and antimicrobial properties, ensuring longer shelf life and higher safety of packaged food products.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Antimicrobial
  • Essential oils
  • Edible films
  • Pickering emulsions

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  2. Bangar, S.P., Whiteside, W.S., Dunno, K.D., Cavender, G.A., & Dawson, P. (2023). Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. International Journal of Biological Macromolecules, 224, 1576-1587. https://doi.org/10.1016/j.ijbiomac.2022.10.243
  3. Barradas, T.N., & de Holanda e Silva, K.G. (2021). Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 19(2), 1153-1171. https://doi.org/10.1007/s10311-020-01142-2
  4. Benbettaïeb, N., Debeaufort, F., & Karbowiak, T. (2019). Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Critical Reviews in Food Science and Nutrition, 59(21), 3431-3455. https://doi.org/10.1080/10408398.2018.1494132
  5. Bu, N., Huang, L., Cao, G., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129553. https://doi.org/10.1016/j.colsurfa.2022.129553
  6. Bu, N., Sun, R., Huang, L., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. International Journal of Biological Macromolecules, 220, 1072-1083. https://doi.org/10.1016/j.ijbiomac.2022.08.157
  7. Cahyana, Y., Putri, Y.S.E., Solihah, D.S., Lutfi, F.S., Alqurashi, R.M., & Marta, H. (2022). Pickering emulsions as vehicles for bioactive compounds from essential oils. Molecules, 27(22), 7872. https://doi.org/10.3390/molecules27227872
  8. Chen, Q., You, N., Liang, C., Xu, Y., Wang, F., Zhang, B., & Zhang, P. (2023). Effect of cellulose nanocrystals-loaded ginger essential oil emulsions on the physicochemical properties of mung bean starch composite film. Industrial Crops and Products, 191, 116003. https://doi.org/10.1016/j.indcrop.2022.116003
  9. Cheng, Y., Cai, X., Zhang, X., Zhao, Y., Song, R., Xu, Y., & Gao, H. (2024). Applications in Pickering emulsions of enhancing preservation properties: current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology, 104643. https://doi.org/10.1016/j.tifs.2024.104643
  10. Dai, H., Chen, Y., Chen, H., Fu, Y., Ma, L., Wang, H., & Zhang, Y. (2023). Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chemistry, 401, 134154. https://doi.org/10.1016/j.foodchem.2022.134154
  11. Das, R., Kumar, A., Singh, C., & Kayastha, A.M. (2024). Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chemistry, 141905. https://doi.org/10.1016/j.foodchem.2024.141905
  12. De Farias, P.M., De Sousa, R.V., Maniglia, B.C., Pascall, M., Matthes, J., Sadzik, A., & Fai, A.E.C. (2025). Biobased food packaging systems functionalized with essential oil via pickering emulsion: Advantages, challenges, and current applications. ACS Omega. https://doi.org/10.1021/acsomega.4c09320
  13. Du, Y., Zhang, S., Sheng, L., Ma, H., Xu, F., Waterhouse, G.I., & Wu, P. (2023). Food packaging films based on ionically crosslinked konjac glucomannan incorporating zein-pectin nanoparticle-stabilized corn germ oil-oregano oil Pickering emulsion. Food Chemistry, 429, 136874. https://doi.org/10.1016/j.foodchem.2023.136874
  14. El-Sayed, A.S., Ibrahim, H., & Farag, M.A. (2022). Detection of potential microbial contaminants and their toxins in fermented dairy products: A comprehensive review. Food Analytical Methods, 15(7), 1880-1898. https://doi.org/10.1007/s12161-022-02253-y.
  15. Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., & Zhang, D. (2023). Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 138, 108438. https://doi.org/10.1016/j.foodhyd.2022.108438
  16. Fasihi, H., Noshirvani, N., & Hashemi, M. (2023). Novel bioactive films integrated with Pickering emulsion of ginger essential oil for food packaging application. Food Bioscience, 51, 102269. https://doi.org/10.1016/j.fbio.2022.102269
  17. Friedman, M., Henika, P.R., & Mandrell, R.E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65(10), 1545-1560. https://doi.org/10.4315/0362-028X-65.10.1545
  18. Gulcin, İ., & Alwasel, S.H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
  19. Guo, X., Wang, X., Wei, Y., Liu, P., Deng, X., Lei, Y., & Zhang, J. (2024). Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chemistry, 435, 137597. https://doi.org/10.1016/j.foodchem.2023.137597
  20. Hamed, I., Özogul, F., & Regenstein, J.M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40-50. https://doi.org/10.1016/j.tifs.2015.11.007
  21. Hosseini, E., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Jahanbin, K. (2020). Preparation of pickering flaxseed oil-in-water emulsion stabilized by chitosan-myristic acid nanogels and investigation of its oxidative stability in presence of clove essential oil as antioxidant. Food Biophysics, 15, 216-228. https://doi.org/10.1007/s11483-019-09612-z
  22. Hua, L., Deng, J., Wang, Z., Wang, Y., Chen, B., Ma, Y., & Xu, B. (2021). Improving the functionality of chitosan-based packaging films by crosslinking with nanoencapsulated clove essential oil. International Journal of Biological Macromolecules, 192, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.09.197
  23. Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A., & Terekhov, R.P. (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences, 21(3), 1131. https://doi.org/10.3390/ijms21031131
  24. Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid & Interface Science, 49, 1-15. https://doi.org/10.1016/j.cocis.2020.04.010
  25. Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2011). New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir, 27(12), 7471-7479. https://doi.org/10.1021/la200971f
  26. Karimi, H., Bodaghi, H., Rajaei, A., & Mojerlou, S. (2020). Investigation of antifungal activity of nanoencapsulation of Thyme vulgaris essential oil against botrytis cinerea in red shahroodi grape (Vitis vinifera Red). Iranian Food Science and Technology Research Journal, 16(4), 367-381. https://doi.org/10.22067/ifstrj.v16i4.76390
  27. Krishna, A. (2012). An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. Journal of Consumer Psychology, 22(3), 332-351. https://doi.org/10.1016/j.jcps.2011.08.003
  28. Lammari, N., Louaer, O., Meniai, A.H., & Elaissari, A. (2020). Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics, 12(5), 431. https://doi.org/10.3390/pharmaceutics12050431
  29. Liu, J., Song, F., Chen, R., Deng, G., Chao, Y., Yang, Z., & Hu, Y. (2022). Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydrate Polymers, 275, 118704. https://doi.org/10.1016/j.carbpol.2021.118704
  30. Liu, L., Ode Boni, B.O., Ullah, M.W., Qi, F., Li, X., Shi, Z., & Yang, G. (2023). Cellulose: A promising and versatile Pickering emulsifier for healthy foods. Food Reviews International, 39(9), 7081-7111. https://doi.org/10.1080/87559129.2022.2142940
  31. Liu, L., Swift, S., Tollemache, C., Perera, J., & Kilmartin, P.A. (2022). Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocolloids, 133, 107971. https://doi.org/10.1016/j.foodhyd.2022.107971
  32. Liu, Z., Lin, D., Li, N., & Yang, X. (2022). Characterization of konjac glucomannan-based active films loaded with thyme essential oil: Effects of loading approaches. Food Hydrocolloids, 124, 107330. https://doi.org/10.1016/j.foodhyd.2021.107330
  33. Madivala, B., Fransaer, J., & Vermant, J. (2009). Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir, 25(5), 2718-2728. https://doi.org/10.1021/la803554u
  34. Mirzaee Moghaddam, H., & Rajaei, A. (2021). Effect of pomegranate seed oil encapsulated in Chitosan-capric acid nanogels incorporating thyme essential oil on physicomechanical and structural properties of Jelly Candy. Journal of Agricultural Machinery, 11(1), 55-70. https://doi.org/10.22067/jam.v11i1.84882
  35. Mirzaee Moghaddam, H. (2019). Investigation of Physicomechanical properties of functional gummy candy fortified with encapsulated fish oil in chitosan-stearic acid nanogel by pickering emulsion method. Journal of Food Science and Technology (Iran), 16(90) 53-64. https://doi.org/10.1111/j.1365-2621.1989.tb05978.x
  36. Majdzadeh, E., Rajaei, A., Mirzaee Moghaddam, H., & Movahed Nezhad, MH. (2018). Investigation of some physical, mechanical and antimicrobial properties of bilayer pectin-carnauba wax films incorporating nanoparticles of TiO2. Journal of Food Science and Technology(Iran), 15(80), 387-398.
  37. Monjazeb Marvdashti, L., Yavarmanesh, M., & Koocheki, A. (2016). The effect of different concentrations of glycerol on properties of blend films based on polyvinyl alcohol-allysum homolocarpum seed gum. Iranian Food Science and Technology Research Journal, 12(5), 663-677. https://doi.org/10.22067/ifstrj.v12i5.53473
  38. Muncke, J., Backhaus, T., Geueke, B., Maffini, M.V., Martin, O.V., Myers, J.P., & Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 095001. https://doi.org/10.1111/j.1541-4337.2012.00216.x
  39. Muñoz-Tebar, N., Pérez-Álvarez, J.A., Fernández-López, J., & Viuda-Martos, M. (2023). Chitosan edible films and coatings with added bioactive compounds: Antibacterial and antioxidant properties and their application to food products: A review. Polymers, 15(2), 396. https://doi.org/10.3390/polym15020396
  40. Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (2025). Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films. Journal of Food Science and Technology (FSCT), 22(161), 260-274. https://doi.org/10.22034/FSCT.22.161.260
  41. Nahalkar, A., Rajaei, A., & Mirzaee Moghaddam, H. (in press). Investigation of some structural and physicomechanical properties of bilayer and composite edible films based on sodium carboxymethyl cellulose. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2025.90690.1312
  42. Nazari, N., Rajaei, A., & Mirzaee Moghaddam, H.M. (2025). Comparative effects of basil seed and cress seed gums on stability of flaxseed oil pickering emulsion and functional Kiwifruit bar characteristics. Food Biophysics, 20(2), 1-15. https://doi.org/10.1007/s11483-025-09947-w
  43. Omidian, H., Akhzarmehr, A., & Chowdhury, S.D. (2024). Advancements in cellulose-based superabsorbent hydrogels: Sustainable solutions across industries. Gels, 10(3), 174. https://doi.org/10.3390/gels10030174
  44. Oun, A.A., Shin, G.H., & Kim, J.T. (2022). Multifunctional poly (vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. International Journal of Biological Macromolecules, 194, 736-745. https://doi.org/10.1016/j.ijbiomac.2021.11.119
  45. Pandita, G., de Souza, C.K., Gonçalves, M.J., Jasińska, J.M., Jamróz, E., & Roy, S. (2024). Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules, 132067. https://doi.org/10.1016/j.ijbiomac.2024.132067
  46. Priyadarshi, R., & Rhim, J.-W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 62, 102346. https://doi.org/10.1016/j.ifset.2020.102346
  47. Qadri, O.S., Yousuf, B., & Srivastava, A.K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food & Agriculture, 1(1), 1121606.
  48. Rajaei, A., Barzegar, M., Mobarez, A.M., Sahari, M.A., & Esfahani, Z.H. (2010). Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food and Chemical Toxicology, 48(1), 107-112. https://doi.org/10.1016/j.fct.2009.09.023
  49. Rajaei, A., Hadian, M., Mohsenifar, A., Rahmani-Cherati, T., & Tabatabaei, M. (2017). A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life, 14, 137-145. https://doi.org/10.1016/j.fpsl.2017.10.005
  50. Rajaei, A., Salarbashi, D., Asrari, N., Fazly Bazzaz, B.S., Aboutorabzade, S.M., & Shaddel, R. (2021). Antioxidant, antimicrobial, and cytotoxic activities of extracts from the seed and pulp of Jujube (Ziziphus jujuba) grown in Iran. Food Science & Nutrition, 9(2), 682-691. https:/doi.org/10.1002/fsn3.2031
  51. Ramos, G.V.C., Ramírez-López, S., Pinho, S.C.D., Ditchfield, C., & Moraes, I.C.F. (2025). Starch-based pickering emulsions for bioactive compound encapsulation: Production, properties, and applications. Processes, 13(2), 342. https://doi.org/10.3390/pr13020342
  52. Rao, J., Chen, B., & McClements, D.J. (2019). Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annual Review of Food Science and Technology, 10(1), 365-387. https://doi.org/10.1146/annurev-food-032818-121727
  53. Roy, S., Priyadarshi, R., & Rhim, J.-W. (2022). Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Research International, 160, 111690. https://doi.org/10.1016/j.foodres.2022.111690
  54. Roy, S., & Rhim, J.-W. (2021a). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 193, 2038-2046. https://doi.org/10.1016/j.ijbiomac.2021.11.035
  55. Roy, S., & Rhim, J.-W. (2021b). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127220. https://doi.org/10.1016/j.colsurfa.2021.127220
  56. Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014(1), 248935. https://doi.org/10.1155/2014/248935
  57. Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66-105. https://doi.org/10.1080/10408398.2020.1812048
  58. Sharkawy, A., Barreiro, M.F., & Rodrigues, A.E. (2020). Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 250, 116885. https://doi.org/10.1016/j.carbpol.2020.116885
  59. Sipos, L., Nyitrai, Á., Hitka, G., Friedrich, L.F., & Kókai, Z. (2021). Sensory panel performance evaluation—Comprehensive review of practical approaches. Applied Sciences, 11(24), 11977. https://doi.org/10.3390/app112411977
  60. Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703. https://doi.org/10.1016/j.ijbiomac.2020.05.118
  61. Tavakoli-Rouzbehani, O.M., Faghfouri, A.H., Anbari, M., Papi, S., Shojaei, F.S., Ghaffari, M., & Alizadeh, M. (2021). The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. Journal of Ethnopharmacology, 281, 114510. https://doi.org/10.1016/j.jep.2021.114510
  62. Valencia-Chamorro, S.A., Palou, L., Del Río, M.A., & Pérez-Gago, M.B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 51(9), 872-900. https://doi.org/10.1080/10408398.2010.485705
  63. Visan, A.I., Popescu-Pelin, G., & Socol, G. (2021). Degradation behavior of polymers used as coating materials for drug delivery—A basic review. Polymers, 13(8), 1272. https://doi.org/10.3390/polym13081272
  64. Wardana, A.A., Wigati, L.P., Van, T.T., Tanaka, F., & Tanaka, F. (2023). Antifungal features and properties of Pickering emulsion coating from alginate/lemongrass oil/cellulose nanofibers. International Journal of Food Science & Technology, 58(2), 966-978. https://doi.org/10.1111/ijfs.16192
  65. Wu, H., Wang, J., Li, T., Lei, Y., Peng, L., Chang, J., & Zhang, Z. (2023). Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. International Journal of Biological Macromolecules, 240, 124444.
  66. Wu, J., & Ma, G.H. (2016). Recent studies of Pickering emulsions: particles make the difference. Small, 12(34), 4633-4648. https://doi.org/10.1016/j.ijbiomac.2023.124444
  67. Xu, J., He, M., Wei, C., Duan, M., Yu, S., Li, D., & Wu, C. (2023). Konjac glucomannan films with Pickering emulsion stabilized by TEMPO-oxidized chitin nanocrystal for active food packaging. Food Hydrocolloids, 139, 108539. https://doi.org/10.1016/j.foodhyd.2023.108539
  68. Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., & Yuan, W. (2017). An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Frontiers in pharmacology, 8, 235054. https://doi.org/10.3389/fphar.2017.00287
  69. Yao, L., Man, T., Xiong, X., Wang, Y., Duan, X., & Xiong, X. (2023). HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. International Journal of Biological Macromolecules, 238, 124053. https://doi.org/10.1016/j.ijbiomac.2023.124053
  70. Zhang, Q., Kong, B., Liu, H., Du, X., Sun, F., & Xia, X. (2024). Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13279. https://doi.org/10.1111/1541-4337.13279
  71. Zhang, S., He, Z., Xu, F., Cheng, Y., Waterhouse, G.I., Sun-Waterhouse, D., & Wu, P. (2022). Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocolloids, 124, 107222. https://doi.org/10.1016/j.foodhyd.2021.107222
  72. Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L., & Li, C. (2022). A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chemical engineering science, 248, 117085. https://doi.org/10.1016/j.ces.2021.117085
  73. Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT, 153, 112506. https://doi.org/10.1016/j.lwt.2021.112506
  74. Zhao, Z., Liu, H., Tang, J., He, B., Yu, H., Xu, X., & Su, Y. (2023). Pork preservation by antimicrobial films based on potato starch (PS) and polyvinyl alcohol (PVA) and incorporated with clove essential oil (CLO) Pickering emulsion. Food Control, 154, 109988. https://doi.org/10.1016/j.foodcont.2023.109988
CAPTCHA Image