نوع مقاله : مقاله مروری لاتین
نویسندگان
دانشکده کشاورزی،دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده
این مقاله به بررسی خواص آنتیاکسیدانی و ضدمیکروبی فیلمهای خوراکی زیستتخریبپذیر دارای امولسیونهای پیکرینگ حاوی اسانس میپردازد. امروزه، فیلمهای خوراکی زیستتخریبپذیر که امولسیونهای پیکرینگ حاوی اسانس را در خود جای دادهاند، بهطور فزایندهای بهعنوان گزینهای امیدبخش برای بستهبندی پایدار مواد غذایی شناخته میشوند. افزودن اسانس به ماتریس امولسیون، عملکرد آنتیاکسیدانی و ضدمیکروبی این فیلمها را بهطور قابلتوجهی افزایش میدهد. بر این اساس، ویژگیهای کلیدی مورد بحث در این مرور شامل فعالیت آنتیاکسیدانی، اثربخشی ضدمیکروبی و نقش این فیلمها در افزایش ماندگاری محصولات غذایی است. نتایج نشان دادهاند که افزودن امولسیونهای پیکرینگ حاوی اسانس، ظرفیت آنتیاکسیدانی فیلمها را بهطور قابل توجهای افزایش داده و موجب کاهش محسوس در تخریب اکسیداتیو مواد غذایی شده است. علاوه بر این، این فیلمها فعالیت ضدمیکروبی مؤثری در برابر عوامل بیماریزای مختلف غذایی مانند اشریشیا کلی و استافیلوکوکوس اورئوس از خود نشان دادهاند که این عملکرد به خواص زیستفعال اسانسهای افزودهشده نسبت داده میشود. این فیلمها با مهار مؤثر رشد میکروبی، به بهبود ایمنی مواد غذایی کمک مستقیم میکنند. این یافتهها، پتانسیل بالای فیلمهای زیستتخریبپذیر حاوی امولسیونهای پیکرینگ را بهعنوان راهکاری پایدار برای بستهبندی مواد غذایی با خواص آنتیاکسیدانی و ضدمیکروبی تأکید میکنند که به افزایش ماندگاری و ایمنی بیشتر محصولات غذایی بستهبندیشده منجر میشود.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Edible Biodegradable Films Incorporating Essential Oil-based Pickering Emulsions: A Review of Antioxidant and Antimicrobial Properties
نویسندگان [English]
- Hossein Mirzaei-moghaddam
- Arian Nahalkar
- Ahmad Rajaei
School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]
This article reviews the antioxidant and antimicrobial properties of biodegradable edible films based on Pickering emulsions containing essential oils. Edible biodegradable films incorporating essential oil-loaded Pickering emulsions are increasingly recognized as a promising option for sustainable food packaging. By incorporating essential oils into the emulsion matrix, the antioxidant and antimicrobial properties of these films significantly improved. Therefore, the key properties discussed in this review include antioxidant activity, antimicrobial effectiveness, and the role of these films in extending the shelf life of food products. The results showed that the incorporation of Pickering emulsions containing essential oils significantly increased the antioxidant capacity of the films, leading to a notable reduction in oxidative degradation of food. Additionally, these films exhibited effective antimicrobial activity against various foodborne pathogens such as Escherichia coli and Staphylococcus aureus, which is attributed to the bioactive properties of the incorporated essential oils. The films effectively inhibited microbial growth, directly contributing to enhanced food safety. The findings highlight the great potential of Pickering emulsion-based biodegradable films as a sustainable solution for food packaging with antioxidant and antimicrobial properties, ensuring longer shelf life and higher safety of packaged food products.
کلیدواژهها [English]
- Antioxidant activity
- Antimicrobial
- Essential oils
- Edible films
- Pickering emulsions
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
- Bangar, S.P., Whiteside, W.S., Dunno, K.D., Cavender, G.A., & Dawson, P. (2023). Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. International Journal of Biological Macromolecules, 224, 1576-1587. https://doi.org/10.1016/j.ijbiomac.2022.10.243
- Barradas, T.N., & de Holanda e Silva, K.G. (2021). Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 19(2), 1153-1171. https://doi.org/10.1007/s10311-020-01142-2
- Benbettaïeb, N., Debeaufort, F., & Karbowiak, T. (2019). Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Critical Reviews in Food Science and Nutrition, 59(21), 3431-3455. https://doi.org/10.1080/10408398.2018.1494132
- Bu, N., Huang, L., Cao, G., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129553. https://doi.org/10.1016/j.colsurfa.2022.129553
- Bu, N., Sun, R., Huang, L., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. International Journal of Biological Macromolecules, 220, 1072-1083. https://doi.org/10.1016/j.ijbiomac.2022.08.157
- Cahyana, Y., Putri, Y.S.E., Solihah, D.S., Lutfi, F.S., Alqurashi, R.M., & Marta, H. (2022). Pickering emulsions as vehicles for bioactive compounds from essential oils. Molecules, 27(22), 7872. https://doi.org/10.3390/molecules27227872
- Chen, Q., You, N., Liang, C., Xu, Y., Wang, F., Zhang, B., & Zhang, P. (2023). Effect of cellulose nanocrystals-loaded ginger essential oil emulsions on the physicochemical properties of mung bean starch composite film. Industrial Crops and Products, 191, 116003. https://doi.org/10.1016/j.indcrop.2022.116003
- Cheng, Y., Cai, X., Zhang, X., Zhao, Y., Song, R., Xu, Y., & Gao, H. (2024). Applications in Pickering emulsions of enhancing preservation properties: current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology, 104643. https://doi.org/10.1016/j.tifs.2024.104643
- Dai, H., Chen, Y., Chen, H., Fu, Y., Ma, L., Wang, H., & Zhang, Y. (2023). Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chemistry, 401, 134154. https://doi.org/10.1016/j.foodchem.2022.134154
- Das, R., Kumar, A., Singh, C., & Kayastha, A.M. (2024). Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chemistry, 141905. https://doi.org/10.1016/j.foodchem.2024.141905
- De Farias, P.M., De Sousa, R.V., Maniglia, B.C., Pascall, M., Matthes, J., Sadzik, A., & Fai, A.E.C. (2025). Biobased food packaging systems functionalized with essential oil via pickering emulsion: Advantages, challenges, and current applications. ACS Omega. https://doi.org/10.1021/acsomega.4c09320
- Du, Y., Zhang, S., Sheng, L., Ma, H., Xu, F., Waterhouse, G.I., & Wu, P. (2023). Food packaging films based on ionically crosslinked konjac glucomannan incorporating zein-pectin nanoparticle-stabilized corn germ oil-oregano oil Pickering emulsion. Food Chemistry, 429, 136874. https://doi.org/10.1016/j.foodchem.2023.136874
- El-Sayed, A.S., Ibrahim, H., & Farag, M.A. (2022). Detection of potential microbial contaminants and their toxins in fermented dairy products: A comprehensive review. Food Analytical Methods, 15(7), 1880-1898. https://doi.org/10.1007/s12161-022-02253-y.
- Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., & Zhang, D. (2023). Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 138, 108438. https://doi.org/10.1016/j.foodhyd.2022.108438
- Fasihi, H., Noshirvani, N., & Hashemi, M. (2023). Novel bioactive films integrated with Pickering emulsion of ginger essential oil for food packaging application. Food Bioscience, 51, 102269. https://doi.org/10.1016/j.fbio.2022.102269
- Friedman, M., Henika, P.R., & Mandrell, R.E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65(10), 1545-1560. https://doi.org/10.4315/0362-028X-65.10.1545
- Gulcin, İ., & Alwasel, S.H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
- Guo, X., Wang, X., Wei, Y., Liu, P., Deng, X., Lei, Y., & Zhang, J. (2024). Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chemistry, 435, 137597. https://doi.org/10.1016/j.foodchem.2023.137597
- Hamed, I., Özogul, F., & Regenstein, J.M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40-50. https://doi.org/10.1016/j.tifs.2015.11.007
- Hosseini, E., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Jahanbin, K. (2020). Preparation of pickering flaxseed oil-in-water emulsion stabilized by chitosan-myristic acid nanogels and investigation of its oxidative stability in presence of clove essential oil as antioxidant. Food Biophysics, 15, 216-228. https://doi.org/10.1007/s11483-019-09612-z
- Hua, L., Deng, J., Wang, Z., Wang, Y., Chen, B., Ma, Y., & Xu, B. (2021). Improving the functionality of chitosan-based packaging films by crosslinking with nanoencapsulated clove essential oil. International Journal of Biological Macromolecules, 192, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.09.197
- Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A., & Terekhov, R.P. (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences, 21(3), 1131. https://doi.org/10.3390/ijms21031131
- Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid & Interface Science, 49, 1-15. https://doi.org/10.1016/j.cocis.2020.04.010
- Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2011). New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir, 27(12), 7471-7479. https://doi.org/10.1021/la200971f
- Karimi, H., Bodaghi, H., Rajaei, A., & Mojerlou, S. (2020). Investigation of antifungal activity of nanoencapsulation of Thyme vulgaris essential oil against botrytis cinerea in red shahroodi grape (Vitis vinifera Red). Iranian Food Science and Technology Research Journal, 16(4), 367-381. https://doi.org/10.22067/ifstrj.v16i4.76390
- Krishna, A. (2012). An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. Journal of Consumer Psychology, 22(3), 332-351. https://doi.org/10.1016/j.jcps.2011.08.003
- Lammari, N., Louaer, O., Meniai, A.H., & Elaissari, A. (2020). Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics, 12(5), 431. https://doi.org/10.3390/pharmaceutics12050431
- Liu, J., Song, F., Chen, R., Deng, G., Chao, Y., Yang, Z., & Hu, Y. (2022). Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydrate Polymers, 275, 118704. https://doi.org/10.1016/j.carbpol.2021.118704
- Liu, L., Ode Boni, B.O., Ullah, M.W., Qi, F., Li, X., Shi, Z., & Yang, G. (2023). Cellulose: A promising and versatile Pickering emulsifier for healthy foods. Food Reviews International, 39(9), 7081-7111. https://doi.org/10.1080/87559129.2022.2142940
- Liu, L., Swift, S., Tollemache, C., Perera, J., & Kilmartin, P.A. (2022). Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocolloids, 133, 107971. https://doi.org/10.1016/j.foodhyd.2022.107971
- Liu, Z., Lin, D., Li, N., & Yang, X. (2022). Characterization of konjac glucomannan-based active films loaded with thyme essential oil: Effects of loading approaches. Food Hydrocolloids, 124, 107330. https://doi.org/10.1016/j.foodhyd.2021.107330
- Madivala, B., Fransaer, J., & Vermant, J. (2009). Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir, 25(5), 2718-2728. https://doi.org/10.1021/la803554u
- Mirzaee Moghaddam, H., & Rajaei, A. (2021). Effect of pomegranate seed oil encapsulated in Chitosan-capric acid nanogels incorporating thyme essential oil on physicomechanical and structural properties of Jelly Candy. Journal of Agricultural Machinery, 11(1), 55-70. https://doi.org/10.22067/jam.v11i1.84882
- Mirzaee Moghaddam, H. (2019). Investigation of Physicomechanical properties of functional gummy candy fortified with encapsulated fish oil in chitosan-stearic acid nanogel by pickering emulsion method. Journal of Food Science and Technology (Iran), 16(90) 53-64. https://doi.org/10.1111/j.1365-2621.1989.tb05978.x
- Majdzadeh, E., Rajaei, A., Mirzaee Moghaddam, H., & Movahed Nezhad, MH. (2018). Investigation of some physical, mechanical and antimicrobial properties of bilayer pectin-carnauba wax films incorporating nanoparticles of TiO2. Journal of Food Science and Technology(Iran), 15(80), 387-398.
- Monjazeb Marvdashti, L., Yavarmanesh, M., & Koocheki, A. (2016). The effect of different concentrations of glycerol on properties of blend films based on polyvinyl alcohol-allysum homolocarpum seed gum. Iranian Food Science and Technology Research Journal, 12(5), 663-677. https://doi.org/10.22067/ifstrj.v12i5.53473
- Muncke, J., Backhaus, T., Geueke, B., Maffini, M.V., Martin, O.V., Myers, J.P., & Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 095001. https://doi.org/10.1111/j.1541-4337.2012.00216.x
- Muñoz-Tebar, N., Pérez-Álvarez, J.A., Fernández-López, J., & Viuda-Martos, M. (2023). Chitosan edible films and coatings with added bioactive compounds: Antibacterial and antioxidant properties and their application to food products: A review. Polymers, 15(2), 396. https://doi.org/10.3390/polym15020396
- Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (2025). Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films. Journal of Food Science and Technology (FSCT), 22(161), 260-274. https://doi.org/10.22034/FSCT.22.161.260
- Nahalkar, A., Rajaei, A., & Mirzaee Moghaddam, H. (in press). Investigation of some structural and physicomechanical properties of bilayer and composite edible films based on sodium carboxymethyl cellulose. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2025.90690.1312
- Nazari, N., Rajaei, A., & Mirzaee Moghaddam, H.M. (2025). Comparative effects of basil seed and cress seed gums on stability of flaxseed oil pickering emulsion and functional Kiwifruit bar characteristics. Food Biophysics, 20(2), 1-15. https://doi.org/10.1007/s11483-025-09947-w
- Omidian, H., Akhzarmehr, A., & Chowdhury, S.D. (2024). Advancements in cellulose-based superabsorbent hydrogels: Sustainable solutions across industries. Gels, 10(3), 174. https://doi.org/10.3390/gels10030174
- Oun, A.A., Shin, G.H., & Kim, J.T. (2022). Multifunctional poly (vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. International Journal of Biological Macromolecules, 194, 736-745. https://doi.org/10.1016/j.ijbiomac.2021.11.119
- Pandita, G., de Souza, C.K., Gonçalves, M.J., Jasińska, J.M., Jamróz, E., & Roy, S. (2024). Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules, 132067. https://doi.org/10.1016/j.ijbiomac.2024.132067
- Priyadarshi, R., & Rhim, J.-W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 62, 102346. https://doi.org/10.1016/j.ifset.2020.102346
- Qadri, O.S., Yousuf, B., & Srivastava, A.K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food & Agriculture, 1(1), 1121606.
- Rajaei, A., Barzegar, M., Mobarez, A.M., Sahari, M.A., & Esfahani, Z.H. (2010). Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food and Chemical Toxicology, 48(1), 107-112. https://doi.org/10.1016/j.fct.2009.09.023
- Rajaei, A., Hadian, M., Mohsenifar, A., Rahmani-Cherati, T., & Tabatabaei, M. (2017). A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life, 14, 137-145. https://doi.org/10.1016/j.fpsl.2017.10.005
- Rajaei, A., Salarbashi, D., Asrari, N., Fazly Bazzaz, B.S., Aboutorabzade, S.M., & Shaddel, R. (2021). Antioxidant, antimicrobial, and cytotoxic activities of extracts from the seed and pulp of Jujube (Ziziphus jujuba) grown in Iran. Food Science & Nutrition, 9(2), 682-691. https:/doi.org/10.1002/fsn3.2031
- Ramos, G.V.C., Ramírez-López, S., Pinho, S.C.D., Ditchfield, C., & Moraes, I.C.F. (2025). Starch-based pickering emulsions for bioactive compound encapsulation: Production, properties, and applications. Processes, 13(2), 342. https://doi.org/10.3390/pr13020342
- Rao, J., Chen, B., & McClements, D.J. (2019). Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annual Review of Food Science and Technology, 10(1), 365-387. https://doi.org/10.1146/annurev-food-032818-121727
- Roy, S., Priyadarshi, R., & Rhim, J.-W. (2022). Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Research International, 160, 111690. https://doi.org/10.1016/j.foodres.2022.111690
- Roy, S., & Rhim, J.-W. (2021a). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 193, 2038-2046. https://doi.org/10.1016/j.ijbiomac.2021.11.035
- Roy, S., & Rhim, J.-W. (2021b). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127220. https://doi.org/10.1016/j.colsurfa.2021.127220
- Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014(1), 248935. https://doi.org/10.1155/2014/248935
- Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66-105. https://doi.org/10.1080/10408398.2020.1812048
- Sharkawy, A., Barreiro, M.F., & Rodrigues, A.E. (2020). Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 250, 116885. https://doi.org/10.1016/j.carbpol.2020.116885
- Sipos, L., Nyitrai, Á., Hitka, G., Friedrich, L.F., & Kókai, Z. (2021). Sensory panel performance evaluation—Comprehensive review of practical approaches. Applied Sciences, 11(24), 11977. https://doi.org/10.3390/app112411977
- Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703. https://doi.org/10.1016/j.ijbiomac.2020.05.118
- Tavakoli-Rouzbehani, O.M., Faghfouri, A.H., Anbari, M., Papi, S., Shojaei, F.S., Ghaffari, M., & Alizadeh, M. (2021). The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. Journal of Ethnopharmacology, 281, 114510. https://doi.org/10.1016/j.jep.2021.114510
- Valencia-Chamorro, S.A., Palou, L., Del Río, M.A., & Pérez-Gago, M.B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 51(9), 872-900. https://doi.org/10.1080/10408398.2010.485705
- Visan, A.I., Popescu-Pelin, G., & Socol, G. (2021). Degradation behavior of polymers used as coating materials for drug delivery—A basic review. Polymers, 13(8), 1272. https://doi.org/10.3390/polym13081272
- Wardana, A.A., Wigati, L.P., Van, T.T., Tanaka, F., & Tanaka, F. (2023). Antifungal features and properties of Pickering emulsion coating from alginate/lemongrass oil/cellulose nanofibers. International Journal of Food Science & Technology, 58(2), 966-978. https://doi.org/10.1111/ijfs.16192
- Wu, H., Wang, J., Li, T., Lei, Y., Peng, L., Chang, J., & Zhang, Z. (2023). Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. International Journal of Biological Macromolecules, 240, 124444.
- Wu, J., & Ma, G.H. (2016). Recent studies of Pickering emulsions: particles make the difference. Small, 12(34), 4633-4648. https://doi.org/10.1016/j.ijbiomac.2023.124444
- Xu, J., He, M., Wei, C., Duan, M., Yu, S., Li, D., & Wu, C. (2023). Konjac glucomannan films with Pickering emulsion stabilized by TEMPO-oxidized chitin nanocrystal for active food packaging. Food Hydrocolloids, 139, 108539. https://doi.org/10.1016/j.foodhyd.2023.108539
- Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., & Yuan, W. (2017). An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Frontiers in pharmacology, 8, 235054. https://doi.org/10.3389/fphar.2017.00287
- Yao, L., Man, T., Xiong, X., Wang, Y., Duan, X., & Xiong, X. (2023). HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. International Journal of Biological Macromolecules, 238, 124053. https://doi.org/10.1016/j.ijbiomac.2023.124053
- Zhang, Q., Kong, B., Liu, H., Du, X., Sun, F., & Xia, X. (2024). Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13279. https://doi.org/10.1111/1541-4337.13279
- Zhang, S., He, Z., Xu, F., Cheng, Y., Waterhouse, G.I., Sun-Waterhouse, D., & Wu, P. (2022). Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocolloids, 124, 107222. https://doi.org/10.1016/j.foodhyd.2021.107222
- Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L., & Li, C. (2022). A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chemical engineering science, 248, 117085. https://doi.org/10.1016/j.ces.2021.117085
- Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT, 153, 112506. https://doi.org/10.1016/j.lwt.2021.112506
- Zhao, Z., Liu, H., Tang, J., He, B., Yu, H., Xu, X., & Su, Y. (2023). Pork preservation by antimicrobial films based on potato starch (PS) and polyvinyl alcohol (PVA) and incorporated with clove essential oil (CLO) Pickering emulsion. Food Control, 154, 109988. https://doi.org/10.1016/j.foodcont.2023.109988
ارسال نظر در مورد این مقاله