با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

10.22067/ifstrj.2025.94222.1452

چکیده

مرکبات منابعی غنی از ویتامین، مواد معدنی و فیبر غذایی فراوان بوده و جزو محبوب‌ترین میوه‌ها در جهان هستند. آسیب‌های مکانیکی در فرآیند برداشت و حمل‌ونقل منجر به رشد میکروارگانیسم‌ها و قارچ‌ها و درنتیجه افزایش ضایعات این محصولات می‌شود. استفاده از قارچ‌کش‌ها و مواد شیمیایی برای کاهش این آسیب‌ها، نگرانی‌های زیست‌محیطی را به همراه دارد، بنابراین استفاده از روشی جایگزین که دوستدار محیط‌زیست بوده و قابلیت توسعه پایدار در فرآوری مواد غذایی را با مصرف کمتری از آب و انرژی داشته باشد، ضروری‌ست. در این پژوهش اثر محلول پراکسید هیدروژن فعال‌شده با پلاسمای سرد و مقایسه آن با اثر قارچ‌کش و محلول پراکسید هیدروژن روی پرتقال خونی رقم مورو در شرایط انبارمانی «طی 75 روز» در روزهای 0، 15، 30، 45 و 75 موردبررسی قرار گرفته است. نتایج نشان داد تیمار پرتقال با پراکسید هیدروژن- پلاسما باعث کاهش روند پیری میوه شد؛ زیرا این نمونه‌ها کمترین میزان pH و بیشترین اسیدیته را داشتند. تیمار قارچ‌کش- آب گرم موجب حفظ بهتر میزان ویتامین C شد؛ بااین‌حال در مقایسه با نمونه شاهد، تیمار پلاسمای سرد اثر منفی بر میزان ویتامین ث نداشت. میزان مواد جامد محلول در تمامی تیمارها در طول نگهداری افزایش یافت، اما بیشترین تغییرات در تیمار قارچ‌کش- آب گرم دیده شد. تیمارها باعث حفظ سفتی پرتقال شدند، اما کاهش وزن در نمونه‌های قارچ‌کش- آب گرم بیشتر بود. تیمار پراکسید هیدروژن- پلاسما تغییرات کمتری در شاخص روشنایی «L» نسبت به سایر تیمارها ایجاد کرد. باتوجه‌به خواص ضدمیکروبی پلاسما و پراکسید هیدروژن، و نتایج این پژوهش که نشان می‌دهد این محصول تأثیر منفی بر خواص کیفی پرتقال ندارد، بلکه در برخی موارد موجب حفظ بهتر کیفیت نمونه‌ها می‌شود، همچنین با درنظر گرفتن اقتصادی‌بودن و سازگاری این ترکیب با محیط‌زیست، استفاده از تیمار پلاسمای سرد به‌عنوان جایگزینی مناسب برای قارچ‌کش‌ها پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the Effect of Post-harvest Treatment with Water and Disinfectant Agents Activated by Cold Plasma on Certain Physicochemical Properties of Oranges

نویسندگان [English]

  • Seyedeh Fatemeh Hosseini 1
  • Seyyed Jafar Hashemi 1
  • Azadeh Ranjbar Nedamani 1
  • Farshad Sohbatzadeh 2

1 Mechanic of Biosystem Department, Sari Agricultural and Natural Resources University, Sari, Iran

2 Department of Atomic and Molecular Physics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran

چکیده [English]

Introduction
Citrus fruits are among the world's most widely cultivated crops, owing to their rich content of vitamins, minerals, and dietary fiber. Mechanical damage during harvesting and transportation can promote the growth of bacteria and fungi, increasing postharvest losses. The use of fungicides and chemicals to mitigate these damages raises environmental concerns. Modern technology and practical development are required to ensure maintaining healthy food, environmental preservation, and food quality without altering its properties. In this study, the effect of plasma technology applied on hydrogen peroxide solution, and comparing it with a fungicide-hot-water treatment and a hydrogen peroxide solution without plasma, on the physicochemical properties of Moro cultivar blood oranges were investigated.
 Materials and Methods
This study involved four treatments: hydrogen peroxide solution (H₂O₂), plasma-activated hydrogen peroxide (PH₂O₂), fungicide-hot water (WT; hot water with fungicide), and a control (C). Treatments were applied on days 0, 15, 30, 45, and 75 (D0–D75) during storage. Changes in pH, total soluble solids (TSS), total acidity (TA), vitamin C content, firmness, weight loss percentage, ripening index (TSS/TA), and color variations in both the fruit and juice were determined.
 Results and Discussion
The results showed that PH₂O₂ samples had the lowest pH and the highest acidity, indicating a slowdown in fruit aging. By the end of storage period, there was no significant difference in pH between the H₂O₂ and WT samples. Vitamin C content was higher in samples treated with fungicide-hot-water; however, the PH₂O₂ treatment did not reduce vitamin C levels compared to the control. Total soluble solids increased in all treatments during storage period, with the greatest change observed in WT. All treatments maintained fruit firmness, although weight loss was higher in WT. The optimal storage time for samples treated with PH₂O₂ and H₂O₂ extended to day 45, showing the most favorable effects on the physicochemical properties of oranges.
 Conclusion
In summary, hydrogen peroxide and plasma-activated hydrogen peroxide effectively contribute to controlling and reducing the viability of the green mold Penicillium digitatum, which is in consist with previous studies. Considering environmental and human health concerns associated with fungicides, as well as the higher cost of fungicides compared with plasma- and hydrogen peroxide-based approaches, the hydrogen peroxide–plasma treatment shows promise as an alternative to fungicide-treatment strategy, with positive impacts on certain quality traits of orange juice.
Funding Sources
This research, in the form of a master's thesis, received financial support from Sari University of Agricultural Sciences and Natural Resources.

کلیدواژه‌ها [English]

  • Cold plasma
  • Hydrogen peroxide
  • Fungicide
  • Orange

Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ali, M., Cheng, J.-H., & Sun, D.-W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science and Technology, 56(1), 69-75. https://doi.org/10.1111/ijfs.14600/v1/review5
  2. Amirabadi, S., Milani, J.M., & Sohbatzadeh, F. (2020). Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids, 104, 105724. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.105724
  3. Baran Zehi, T., Gholam Nezhad, J., Dehestani, M., Jafari, A., & Naseri Nasab, F. (2019). The evolution of activity and gene expression of some antioxidant enzymes and qualitative characters of orange fruits under cover treatments. Cell and Tissue Journal, 10(4), 226-242. https://doi.org/10.52547/JCT.10.4.226
  4. Barzanoni, A., Aghkhani, M., Moskouki, A., & Abbaspourfard, M. (2014). The effect of heat pretreatment and plant essential oils on the post-harvest properties of blood oranges. Journal of Horticultural Sciences (Agricultural Sciences and Industries), 1392(4), 423-418. https://doi.org/10.22067/jhorts4.v0i0.30589
  5. Barzanouni, E., Sadrnia, H., Sohbatzadeh, F., & Khodavaisy, S. (2024). Synergistic effect of atmospheric pressure cold plasma and hydrogen peroxide as an efficient approach for the control of citrus postharvest green mold. Journal of Agricultural Machinery, 14(4), 355-366. https://doi.org/10.22067/jam.2023.82325. 1165
  6. Dong, X.Y., & Yang, Y.L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8), 1409-1421. https:doi.org/10.1007/s11947-019-02305-y
  7. Faghih nasiri, M., Omidbaigi, R., Fakhr Tabatabaie, S.M., Arzani, K., & Zare, R. (2019). Comparison of the effect of physical and chemical treatments on decay control, qualitative characteristics and some flavonoids of Thomson-navel orange fruits in cold storage. Journal of Food Science and Technology (Iran), 16(86), 133-147.
  8. (2021). Citrus Fruit Fresh and Processed: Statistical Bulletin 2020. FAO. https://coilink.org/20.500.12592/bsg3dv
  9. Fattahi, J., Hashempour, A., Hamidoghli, Y., & Fotouhi, R. (2018). The effect of heat treatment on bioactive compounds and antioxidant capacity of fruits pulp and peel of two blood orange varieties (‘Sanguinello’and ‘Moro’) during storage. Food Research Journal, 28(4), 129-141.
  10. Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V.N., & Fridman, A. (2008). Applied plasma medicine. Plasma Processes and Polymers, 5(6), 503-533. https://doi.org/10.1002/ppap.200700154
  11. Güler, S.K., Bostan, S.Z., & Çon, A.H. (2017). Effects of gamma irradiation on chemical and sensory characteristics of natural hazelnut kernels. Postharvest Biology and Technology, 123, 12-21. https://doi.org/10.1016/j.postharvbio.2016.08.007
  12. Helali, N., Shahidi, S.A., Lavasani, A.S., & Habibiyan, M. (2023). Evaluation of the effect of cold plasma on the shelf life of sour lemon. Journal of Applied Microbiology in food industry, 9(1), 74-85. https://www.magiran.com/paper/2601670
  13. Hosseini, C., Asghari, M.R., & Khezri, M. (2023). Increasing antioxidant compounds and maintaining the appearance quality of cherry fruit after harvest under theinfluence of marjoram essential oil. Journal of Horticultural Science, 37(1), 151-166. https://doi.org/10.22067/jhs.2022.73954.1114
  14. Illera, A., Chaple, S., Sanz, M., Ng, S., Lu, P., Jones, J., Carey, E., & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/10.1016/j.fochx.2019.100049
  15. Ismail, M., & Zhang, J. (2004). Post-harvest citrus diseases and their control. Outlooks on Pest Management, 15(1), 29. http://doi.org/1564/15feb12
  16. Karami, M., Rahemi, M., Yassaie, M., & Karami, A. (2023). Effects of hydrogen peroxide on decreasing microbial contaminations in raisins of Bavanat region. Journal of Horticultural Science, 37(1), 63-73. https://doi.org/10.22067/jhs.2022.71532.1074
  17. Klimczak, I., Małecka, M., Szlachta, M., & Gliszczyńska-Świgło, A. (2007). Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20(3-4), 313-322. https://doi.org/10.1016/j.jfca.2006.02.012
  18. Lin, C.-M., Moon, S.S., Doyle, M.P., & Mcwatters, K.H. (2002). Inactivation of Escherichia coli O157: H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. Journal of Food Protection, 65(8), 1215-1220. https://doi.org/10.4315/0362-028x-65.8.1215
  19. Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., & Fang, J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643-651. https://doi.org/10.1016/j.jhazmat.2015.07.061
  20. Maktabi, S., Zarei, M., & Rashnavady, R. (2018). Effect of sequential treatments with sodium dodecyl sulfate and citric acid or hydrogen peroxide on the reduction of some foodborne pathogens on eggshell. Iranian Journal of Veterinary Research, 19(2), 113.
  21. Nikkhah, S., & Moghadam, E.G. (2005). Effect of plant oils on reducing decay and extending storage life in—Golden delicious—and—Red delicious—apples. Frutic, 5(12), 61-67.
  22. Obagwu, J., & Korsten, L. (2003). Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 28(1), 187-194.https://doi.org/10.1016/S0925-5214(02)00145-X
  23. Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., & Von Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3‐4), 250-257. https://doi.org/10.1002/ppap.200900077
  24. Parish, M., Beuchat, L., Suslow, T., Harris, L., Garrett, E., Farber, J., & Busta, F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh‐cut produce. Comprehensive Reviews in Food Science and Food Safety, 2, 161-173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.x
  25. Queb-González, D.B., Lopez-Malo, A., Sosa-Morales, M.E., & Villa-Rojas, R. (2020). Postharvest heat treatments to inhibit Penicillium digitatum growth and maintain quality of Mandarin (Citrus reticulata blanco). Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2020.e03166
  26. Rapisarda, P., Bianco, M.L., Pannuzzo, P., & Timpanaro, N. (2008). Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biology and Technology, 49(3), 348-354.https://doi.org/10.1016/j.postharvbio.2008.02.002
  27. Rostgar, S., & Tahmasabi, S. (2018). Using the essence of rose, Morkhush and Salvia in preventing the growth of Botrytis sinerer fungus in two varieties of strawberry fruit. Journal of Innovation in Food Science and Technology, 10(3), 85_96.
  28. Sadrnia, H., Yampi, E., & Aghkhani, M. (2015). Control of postharvest green mold using sodium bicarbonate in Jaffa and blood orange varieties. https://doi.org/10.22059/ijhs.2015.55868
  29. Shakerinasab, E., & Mohsenpour, T. (2021). Comparison of the effect of dielectric barrier discharge plasma in surface and volume mode of treatment on physical and chemical properties of saffron. Journal of Food Science and Technology (Iran), 18(120), 13-25. https://doi.org/10.52547/fsct.18.120.2
  30. Shirani Rad, S., Sayyari, M., & Zolfigol, M.A. (2024). The effect of coating with pomegranate peel and tomato seedlings extracts on the phytochemical traits and maintaining the quality of strawberry fruits cv. Paros during cold storage. Journal Of Horticultural Science, 37(4), 1115-1134. https://doi.org/10.22067/jhs.2023.81683.1249
  31. Shokrollahfam, S., Hajilou, J., Zare, F., Tabatabaei, S., & Naghshibandhasani, R. (2012). Effects of calcium chloride and salicylic acid on quality traits and storage life of plum cultivar. Journal of Food Research, 22(1), 75-76.
  32. Taghipour, A., Katabchi, M., & Shorzei, S. (2012). Comparison of the treatment effect of antagonistic bacteria isolated from the surface of Mexican lime fruit, hot water and thiabendazole fungicide in controlling green mold disease of lime fruit (Penicillium digitatum). Quarterly Journal of Physiology and Technology after Harvest of Garden Products, 1(1), 87-79.
  33. Tarabová, B., Tampieri, F., Maran, E., Marotta, E., Ostrihoňová, A., Krewing, M., & Machala, Z. (2021). Chemical and antimicrobial effects of air non-thermal plasma processing of fresh apple juice with focus on safety aspects. Foods, 10(9), 2055. https://doi.org/10.3390/foods10092055
  34. Violeta, N., Trandafir, I., & Ionica, M.E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-napoca, 38(1), 44-48. https://doi.org/10.15835/nbha.43.2.10081   
CAPTCHA Image